1887

Abstract

( Blochmannia gen. nov.) is the primary bacterial endosymbiont of the ant genus Like other obligate endosymbionts of insects, occurs exclusively within eukaryotic cells and has experienced long-term vertical transmission through host lineages. In this study, PFGE was used to estimate the genome size of as approximately 800 kb, which is significantly smaller than its free-living relatives in the enterobacteria. This small genome implies that has deleted most of the genetic machinery of related free-living bacteria. Due to restricted gene exchange in obligate endosymbionts, the substantial gene loss in and other insect mutualists may reflect irreversible specialization to a host cellular environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2551
2002-08-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482551a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2551&mimeType=html&fmt=ahah

References

  1. Akman L., Aksoy S. 2001; A novel application of gene arrays: Escherichia coli array provides insight into the biology of the obligate endosymbiont of tsetse flies. Proc Natl Acad Sci USA98:7546–7551[CrossRef]
    [Google Scholar]
  2. Andersson S. G. E., Kurland C. G. 1998; Reductive evolution of resident genomes. Trends Microbiol6:263–268[CrossRef]
    [Google Scholar]
  3. Ausubel R., Kingston R., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987; Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  4. Baumann P., Baumann L., Lai C., Rouhbakhsh D., Moran N., Clark M. 1995; Genetics, physiology, and evolutionary relationships of the genus Buchnera : intracellular symbionts of aphids. Annu Rev Microbiol49:55–94[CrossRef]
    [Google Scholar]
  5. Baumann P., Baumann L., Clark M., Thao M. 1998; Genetic properties and adaptations of Buchnera aphidicola to an endosymbiotic association with aphids. ASM News64:203–208
    [Google Scholar]
  6. Bergthorsson U., Ochman H. 1995; Heterogeneity of genome sizes among natural isolates of E. coli . J Bacteriol177:5784–5789
    [Google Scholar]
  7. Bergthorsson U., Ochman H. 1998; Distribution of chromosome length variation in natural isolates of E. coli . Mol Biol Evol15:6–16[CrossRef]
    [Google Scholar]
  8. Blochmann F. 1887; Uber das Vorkommen bakterienahnlicher Gebilde in den Geweben und Eiern verschiedener Insekten. Zentbl Bakteriol11:234–240
    [Google Scholar]
  9. Bolton B. 1995; A New General Catalogue of the Ants of the World Cambridge, MA: Harvard University Press;
    [Google Scholar]
  10. Boursaux-Eude C., Gross R. 2000; New insights into symbiotic associations between ants and bacteria. Res Microbiol151:513–519[CrossRef]
    [Google Scholar]
  11. Buchner P. 1965; Endosymbiosis of Animals with Plant Microorganisms New York: Interscience/Wiley;
    [Google Scholar]
  12. Charles H., Ishikawa H. 1999; Physical and genetic map of the genome of Buchnera , the primary endosymbiont of the pea aphid Acyrthosiphon pisum . J Mol Biol48:142–150
    [Google Scholar]
  13. Charles H., Mouchiroud D., Lobry J., Goncalves I., Rahbe Y. 1999; Gene size reduction in the bacterial aphid endosymbiont, Buchnera . Mol Biol Evol16:1820–1822[CrossRef]
    [Google Scholar]
  14. Charles H., Heddi A., Rahbe Y. 2001; A putative insect intracellular endosymbiont stem clade, within the Enterobacteriaceae, infered from phylogenetic analysis based on a heterogeneous model of DNA evolution. C R Acad Sci III324:489–494[CrossRef]
    [Google Scholar]
  15. Dasch G. A. 1975; Morphological and Molecular Studies on Intracellular Bacterial Symbiotes of Insects New Haven, CT: Yale University;
    [Google Scholar]
  16. Dasch G., Weiss E., Chang K. 1984; Endosymbionts of insects. In Bergey’s Manual of Systematic Bacteriology pp811–833 Edited by Holt J., Krieg N.. Baltimore: Williams & Williams;
    [Google Scholar]
  17. Douglas A. E. 1998; Nutritional interactions in insect–microbial symbioses: aphids and their symbiotic bacteria Buchnera . Annu Rev Entomol43:17–37[CrossRef]
    [Google Scholar]
  18. Douglas A. E. 1989; Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc64:409–434[CrossRef]
    [Google Scholar]
  19. Fraser C., Gocayne J., White O.. 25 other authors 1995; The minimal gene complement of Mycoplasma genitalium . Science270:397–403[CrossRef]
    [Google Scholar]
  20. Funk D. J., Helbling L., Wernegreen J. J., Moran N. A. 2000; Intraspecific phylogenetic congruence among multiple symbiont genomes. Proc R Soc Lond Ser B Biol Sci267:2517–2521[CrossRef]
    [Google Scholar]
  21. Hinde R. 1971; The control of the mycetocyte symbiotes of the aphids Brevicoryne brassicae, Myzus persicae and Macrosiphum rosae . J Insect Physiol17:1791–1800[CrossRef]
    [Google Scholar]
  22. Hölldobler B., Wilson E. O. 1990; The Ants Cambridge, MA: Belknap Press of Harvard University Press;
    [Google Scholar]
  23. Lawrence J. G. 1999; Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol2:519–523[CrossRef]
    [Google Scholar]
  24. Lawrence J. G., Roth J. R. 1999; Genomic flux: genome evolution by gene loss and acquisition. In Organization of the Prokaryotic Genome Edited by Charlesbois R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Mira A., Ochman H., Moran N. A. 2001; Deletional bias and the evolution of bacterial genomes. Trends Genet17:589–596[CrossRef]
    [Google Scholar]
  26. Moran N. A. 1996; Accelerated evolution and Muller’s ratchet in endosymbiotic bacteria. Proc Natl Acad Sci USA93:2873–2878[CrossRef]
    [Google Scholar]
  27. Moran N. A., Wernegreen J. J. 2000; Are mutualism and parasitism irreversible evolutionary alternatives for endosymbiotic bacteria? Insights from molecular phylogenetics and genomics. Trends Ecol Evol15:321–326[CrossRef]
    [Google Scholar]
  28. Ochman H., Moran N. A. 2001; Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science292:1096–1098[CrossRef]
    [Google Scholar]
  29. Ohta T. 1973; Slightly deleterious mutant substitutions in evolution. Nature246:96–98[CrossRef]
    [Google Scholar]
  30. Sameshima S., Sasegawa E., Kitade O., Minaka N., Matsumoto T. 1999; Phylogenetic comparison of endosymbionts with their host ants based on molecular evidence. Zool Sci16:993–1000[CrossRef]
    [Google Scholar]
  31. Sauer C., Stackebrandt E., Gadau J., Holldobler B., Gross R. 2000; Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov. Int J Syst Evol Microbiol50:1877–1886
    [Google Scholar]
  32. Schroder D., Deppisch H., Obermayer M., Krohne G., Stackebrandt E., Holldobler B., Goebel W., Gross R. 1996; Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution, and ultrastructural characterization. Mol Microbiol21:479–489[CrossRef]
    [Google Scholar]
  33. Shigenobu S., Watanabe H., Hattori M., Sakaki Y., Ishikawa H. 2000; Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature407:81–86[CrossRef]
    [Google Scholar]
  34. Tamas I., Klasson L., Sandstrom J., Andersson S. 2001; Mutualists and parasites: how to paint yourself into a (metabolic) corner. FEBS Lett498:135–139[CrossRef]
    [Google Scholar]
  35. Wernegreen J. J., Ochman H., Jones I. B., Moran N. A. 2000; The decoupling of genome size and sequence divergence in a symbiotic bacterium. J Bacteriol182:3867–3869[CrossRef]
    [Google Scholar]
  36. Wilson E. O. 1985; Invasion and extinction in the West Indian ant fauna: evidence from the Dominican amber. Science229:265–267[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-8-2551
Loading
/content/journal/micro/10.1099/00221287-148-8-2551
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error