1887

Abstract

The nucleotide sequence of the 12·6 kb region between the and genes of serovar Typhimurium LT2 () was compared to other enteric bacterial intergenic regions. The region is composed of three distinct segments, designated HK, O and S, as defined by sequence similarities to contiguous ORFs in other bacteria. Inverted chromosomal orientations of each of these segments are found between the and genes in related . The HK segment is distantly related to a cluster of seven ORFs found in and a cluster of five ORFs found between the and genes in K-12. The O segment is related to the intergenic region found in O157:H7 and type 1. The third segment, S, is common to diverse species, but is absent from . Despite the extensive collinearity and conservation of the overall genetic maps of and K-12, the insertions, deletions and inversions in the region provide evidence that this region of the chromosome is an active site for horizontal gene transfer and rearrangement.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2531
2002-08-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482531a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2531&mimeType=html&fmt=ahah

References

  1. Andre A., Puca A., Sansone F., Brandi A., Antico G., Calogero R. A. 2000; Reinitiation of protein synthesis in Escherichia coli can be induced by mRNA cis -elements unrelated to canonical translation initiation signals. FEBS Lett 468:73–78 [CrossRef]
    [Google Scholar]
  2. Blattner F. R., Plunkett G. 3rd, Bloch C. A. 14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474 [CrossRef]
    [Google Scholar]
  3. Boyd E. F., Wang F. S., Whittam T. S., Selander R. K. 1996; Molecular genetic relationships of the salmonellae. Appl Environ Microbiol 62:804–808
    [Google Scholar]
  4. Brown E. W., LeClerc J. E., Li B., Payne W. L., Cebula T. A. 2001a; Phylogenetic evidence for horizontal transfer of mutS alleles among naturally occurring Escherichia coli strains. J Bacteriol 183:1631–1644 [CrossRef]
    [Google Scholar]
  5. Brown E. W., LeClerc J. E., Kotewicz M. L., Cebula T. A. 2001b; Three R’s of bacterial evolution: how replication, repair, and recombination frame the origin of species. Environ Mol Mutagen 38:248–260 [CrossRef]
    [Google Scholar]
  6. Brown E. W., Kotewicz M. L., Cebula T. A. 2002; Detection of recombination in Salmonella enterica using the incongruence length difference test. Mol Phylogenet Evol 24:102–120 [CrossRef]
    [Google Scholar]
  7. Carter P. E., Butler L., Booth I. R., Thomson-Carter F. M. 1999; Characterization of the mutS–rpoS region from STEC and non-STEC. In Abstracts of the 99th General Meeting of the American Society for Microbiology p 237 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Culham D. E., Wood J. M. 2000; An Escherichia coli reference collection group B2- and uropathogen-associated polymorphism in the rpoS–mutS region of the E. coli chromosome. J Bacteriol 182:6272–6276 [CrossRef]
    [Google Scholar]
  9. Dauga C. 2002; Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae : a model molecule for molecular systematic studies. Int J Syst Evol Microbiol 52:531–547
    [Google Scholar]
  10. Denamur E., Lecointre G., Darlu P. 9 other authors 2000; Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 103:711–721 [CrossRef]
    [Google Scholar]
  11. de Rosa R., Labedan B. 1998; The evolutionary relationships between the two bacteria Escherichia coli and Haemophilus influenzae and their putative last common ancestor. Mol Biol Evol 15:17–27 [CrossRef]
    [Google Scholar]
  12. Eisen J. A., Heidelber J. F., White O., Salzberg S. L. 2000; Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol 1:RESEARCH0011.1–0011.9
    [Google Scholar]
  13. Hacker J., Kaper J. B. 2000; Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679 [CrossRef]
    [Google Scholar]
  14. Hartman P. E., Hartman Z., Stahl R. C. 1971; Classification and mapping of spontaneous and induced mutations in the histidine operon of Salmonella . Adv Genet 16:1–34
    [Google Scholar]
  15. Herbelin C. J., Chirillo S. C., Melnick K. A., Whittam T. S. 2000; Gene conservation and loss in the mutS–rpoS genomic region of pathogenic Escherichia coli . J Bacteriol 182:5381–5390 [CrossRef]
    [Google Scholar]
  16. Hughes D. 2000; Evaluating genome dynamics: the constraints on rearrangements within bacterial genomes. Genome Biol 1: REVIEWS0006.1–0006.8
    [Google Scholar]
  17. Kupchella E., Koch W. H., Cebula T. A. 1994; Mutant alleles of tRNA ( Thr ) genes suppress the hisG46 missense mutation in Salmonella typhimurium. Environ Mol Mutagen. 2381–88 [CrossRef]
  18. Lawrence J. G., Roth J. R. 1996; Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143:1843–1860
    [Google Scholar]
  19. LeClerc J. E., Cebula T. A. 2000; Pseudomonas survival strategies in cystic fibrosis. Science 289:391–392
    [Google Scholar]
  20. LeClerc J. E., Li B., Payne W. L., Cebula T. A. 1996; High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208–1211 [CrossRef]
    [Google Scholar]
  21. LeClerc J. E., Li B., Payne W. L., Cebula T. A. 1999; Promiscuous origin of a chimeric sequence in the Escherichia coli O157: H7 genome. J Bacteriol 181:7614–7617
    [Google Scholar]
  22. Liu S. L., Sanderson K. E. 1996; Highly plastic chromosomal organization in Salmonella typhi . Proc Natl Acad Sci USA 93:10303–10308 [CrossRef]
    [Google Scholar]
  23. Liu S. L., Sanderson K. E. 1998; Homologous recombination between rrn operons rearranges the chromosome in host-specialized species of Salmonella . FEMS Microbiol Lett 164:275–281 [CrossRef]
    [Google Scholar]
  24. Liu S. L., Hessel A., Sanderson K. E. 1993; Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli , and other bacteria. Proc Natl Acad Sci USA 90:6874–6878 [CrossRef]
    [Google Scholar]
  25. Liu G. R., Rahn A., Liu W. Q., Sanderson K. E., Johnston R. N., Liu S. L. 2002; The evolving genome of Salmonella enterica serovar Pullorum. J Bacteriol 184:2626–2633 [CrossRef]
    [Google Scholar]
  26. Martin K., Morlin G., Smith A., Nordyke A., Eisenstark A., Golomb M. 1998; The tryptophanase gene cluster of Haemophilus influenzae type b: evidence for horizontal gene transfer. J Bacteriol 180:107–118
    [Google Scholar]
  27. Matic I., Rayssiguier C., Radman M. 1995; Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80:507–515 [CrossRef]
    [Google Scholar]
  28. McClelland M., Sanderson K. E., Spieth J. 23 other authors 2001; Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856 [CrossRef]
    [Google Scholar]
  29. Mills D. M., Bajaj V., Lee C. A. 1995; A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol Microbiol 15:749–759
    [Google Scholar]
  30. Missiakas D., Raina S. 1997; Signal transduction pathways in response to protein misfolding in the extracytoplasmic compartments of E. coli : role of two new phosphoprotein phosphatases PrpA and PrpB. EMBO J 16:1670–1685 [CrossRef]
    [Google Scholar]
  31. Neidhardt F. C., Curtiss R. III, Ingraham J. L. 7 other editors 1996 Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. vols I and II Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Pancetti A., Galan J. E. 2001; Characterization of the mutS -proximal region of the Salmonella typhimurium SPI-1 identifies a group of pathogenicity island-associated genes. FEMS Microbiol Lett 197:203–208 [CrossRef]
    [Google Scholar]
  33. Parkhill J., Dougan G., James K. D. 38 other authors 2001; Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852 [CrossRef]
    [Google Scholar]
  34. Perez-Rueda E., Collado-Vides J. 2001; Common history at the origin of the position–function correlation in transcriptional regulators in archaea and bacteria. J Mol Evol 53:172–179 [CrossRef]
    [Google Scholar]
  35. Reeves M. W., Evins G. M., Heiba A. A., Plikaytis B. D., Farmer J. J. 3rd (1989; Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis and proposal of Salmonella bongori comb. nov. J Clin Microbiol 27:313–320
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Sanderson K. E., Hessel A., Shu-Lin L., Rudd K. E. others 1996; The genetic map of Salmonella typhimurium , Edition VIII. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. pp 1903–1999 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Shi L., Kehres D. G., Maguire M. E. 2001; The PPP-family protein phosphatases PrpA and PrpB of Salmonella enterica serovar Typhimurium possess distinct biochemical properties. J Bacteriol 183:7053–7057 [CrossRef]
    [Google Scholar]
  39. Smith C. M., Koch W. H., Franklin S. B., Foster P. L., Cebula T. A., Eisenstadt E. 1990; Sequence analysis and mapping of the Salmonella typhimurium LT2 umuDC operon. J Bacteriol 172:964–978
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-8-2531
Loading
/content/journal/micro/10.1099/00221287-148-8-2531
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error