1887

Abstract

In and enteroinvasive (EIEC) the expression of the virulence-plasmid(pINV)-carried potential pathogenesis-associated gene, which encodes apyrase (ATP diphosphohydrolase), is regulated by the same regulators that govern the expression of virulence genes. To understand the transcriptional organization of the gene, the authors sequenced an 8023 bp I fragment of the pINV of EIEC strain HN280, which encompasses as well as its adjacent genes. The I fragment displays 99% identity with the corresponding fragment of pWR100, the pINV of strain M90T, and contains four genes. One of these genes, , encodes a secreted protein of unknown activity and is located immediately upstream of . Analyses of sequence, Northern hybridization, RT-PCR and primer extension data and transcriptional fusions indicated that and are co-transcribed as a 2 kb bicistronic, temperature-regulated mRNA from an upstream promoter that precedes . The 2 kb mRNA is post-transcriptionally processed in the intercistronic region, leading to the considerable accumulation of a more stable 1 kb specific mRNA (half-life of 22±03 min, versus 27±4 s for the 2 kb transcript). Upon temperature induction, peak expression of the operon occurs when bacteria enter into the late phases of bacterial growth, where the -specific transcript was found to be much more prevalent if compared to the transcript.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2519
2002-08-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482519a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2519&mimeType=html&fmt=ahah

References

  1. Alifano P., Bruni C. B., Carlomagno M. S. 1994; Control of mRNA processing and decay in prokaryotes. Genetica94:157–172[CrossRef]
    [Google Scholar]
  2. Babu M. M., Kamalakkannan S., Subrahmanyam Y. V. B. K., Sankaran K. 2002; Shigella apyrase – a novel variant of bacterial acid phosphatases?. FEBS Lett512:8–12[CrossRef]
    [Google Scholar]
  3. Baga M., Goransson M., Normark S., Uhlin B. E. 1988; Processed mRNA with differential stability in the regulation of E. coli pilin gene expression. Cell52:197–206[CrossRef]
    [Google Scholar]
  4. Baharani F. K., Sansonetti P. J., Parsot C. 1997; Secretion of Ipa proteins by Shigella flexneri : inducer molecules and kinetics of activation. Infect Immun65:4005–4010
    [Google Scholar]
  5. Belasco J. G., Beatty J. T., Adams C. W., von Gabain A., Cohen S. N. 1985; Differential expression of photosynthetic genes in R. capsulata results from segmental differences in stability within the polycistronic rxcA transcript. Cell40:171–181[CrossRef]
    [Google Scholar]
  6. Berlutti F., Casalino M., Zagaglia C., Fradiani P A., Visca P., Nicoletti M. 1998; Expression of the virulence plasmid-carried apyrase gene ( apy) of enteroinvasive Escherichia coli and Shigella flexneri is under the control of H-NS and the VirF and VirB regulatory cascade. Infect Immun66:4957–4964
    [Google Scholar]
  7. Bhargava T., Datta S., Ramakrishnan V., Roy R. K., Sankaran K., Subrahmanyam Y. V. B. K. 1995; Virulent Shigella codes for a soluble apyrase: identification, characterization and cloning of the gene. Curr Sci68:293–300
    [Google Scholar]
  8. Brosius J., Ullrich A., Raker M. A., Gray A., Dull T. J., Gutell R. R., Noller H. F. 1981; Construction and fine mapping of recombinant plasmids containing the rrnB ribosomal RNA operon of E. coli . Plasmid6:112–118[CrossRef]
    [Google Scholar]
  9. Buchrieser C., Glaser P., Rusniok C., Nedjari H., d’Hauteville H., Kunst F., Sansonetti P. J., Parsot C. 2000; The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri . Mol Microbiol38:760–771[CrossRef]
    [Google Scholar]
  10. Colonna B., Casalino M., Fradiani P. A.. 7 other authors 1995; H-NS regulation of virulence gene expression in enteroinvasive Escherichia coli harboring the virulence plasmid integrated into the host chromosome. J Bacteriol177:4703–4712
    [Google Scholar]
  11. Dagberg B., Uhlin B. E. 1992; Regulation of virulence-associated plasmid genes in enteroinvasive Escherichia coli . J Bacteriol174:7606–7612
    [Google Scholar]
  12. Day W. A. Jr, Maurelli A. T. 2001; Shigella flexneri LuxS quorum-sensing system modulates virB expression but is not essential for virulence. Infect Immun69:15–23[CrossRef]
    [Google Scholar]
  13. Dorman C. J., Bhriain N. N., Higgins C. F. 1990; DNA supercoiling and environmental regulation of virulence gene expression in Shigella flexneri . Nature344:789–792[CrossRef]
    [Google Scholar]
  14. Falconi M., Colonna B., Prosseda G., Micheli G., Gualerzi C. O. 1998; Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J17:7033–7043[CrossRef]
    [Google Scholar]
  15. Fernandez-Prada C. M., Hoover D. L., Tall B. D., Venkatesan M. M. 1997; Human monocyte-derived macrophages infected with virulent Shigella flexneri in vitro undergo a rapid cytolytic event similar to oncosis but not apoptosis. Infect Immun65:1486–1496
    [Google Scholar]
  16. Grunberg-Manago M. 1999; Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet33:193–227[CrossRef]
    [Google Scholar]
  17. Hromockyi A. E., Tucker S C., Maurelli A. T. 1992; Temperature regulation of Shigella virulence: identification of the repressor gene virR , an analogue of hns , and partial complementation by tyrosyl transfer RNA (tRNA1(Tyr). Mol Microbiol6:2113–2124[CrossRef]
    [Google Scholar]
  18. Jost B. H., Adler B. 1993; Site of transcriptional activation of virB on the large plasmid of Shigella flexneri 2a by VirF, a member of the AraC family of transcriptional activators. Microb Pathog14:481–488[CrossRef]
    [Google Scholar]
  19. Mantis N., Prevost M. C., Sansonetti P. J. 1996; Analysis of epithelial cell stress response during infection by Shigella flexneri . Infect Immun64:2474–2482
    [Google Scholar]
  20. McCarthy J. E. G., Gerstel B., Surin B., Wiedemann U., Ziemke P. 1991; Differential gene expression from the Escherichia coli atp operon mediated by segmental differences in mRNA stability. Mol Microbiol5:2447–2458[CrossRef]
    [Google Scholar]
  21. Miller J. H. 1972; Experiments in Molecular Genetics Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Naureckiene S., Uhlin B. E. 1996; In vitro analysis of mRNA processing by RNase E in the pap operon of Escherichia coli . Mol Microbiol21:55–68[CrossRef]
    [Google Scholar]
  23. Newbury S. F., Smith N. H., Robinson E. C., Hiles I. D., Higgins C. F. 1987; Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell48:297–310[CrossRef]
    [Google Scholar]
  24. Nilsson P., Uhlin B. E. 1991; Differential decay of a polycistronic Escherichia coli transcript is initiated by RNaseE-dependent endonucleolytic processing. Mol Microbiol5:1791–1799[CrossRef]
    [Google Scholar]
  25. Owolabi J. B., Rosen B. P. 1990; Differential mRNA stability controls relative gene expression within the plasmid-encoded arsenical resistance operon. J Bacteriol172:2367–2371
    [Google Scholar]
  26. Porter M. E., Dorman C. J. 1994; A role for H-NS in the thermo-osmotic regulation of virulence gene expression in Shigella flexneri . J Bacteriol176:4187–4191
    [Google Scholar]
  27. Rose R. E. 1988; The nucleotide sequence of pACYC177. Nucleic Acids Res16:356–362[CrossRef]
    [Google Scholar]
  28. Ruiz-Echevarria M. J., de la Cueva G., Diaz-Orejas R. 1995; Translational coupling and limited degradation of a polycistronic messenger modulate differential gene expression in the parD stability system of plasmid R1. Mol Gen Genet248:599–609[CrossRef]
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Sansonetti P. J. 2001; Rupture, invasion and inflammatory destruction of the intestinal barrier by Shigella , making sense of prokaryote–eukaryote cross-talks. FEMS Microbiol Rev25:3–14
    [Google Scholar]
  31. Spaink H. P., Okker J. H., Wijffelman C. A., Pees E., Lugtenberg B. J. J. 1987; Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1J1. Plant Mol Biol9:27–39[CrossRef]
    [Google Scholar]
  32. Tobe T., Nagai S., Okada N., Adler B., Yoshikawa M., Sasakawa C. 1991; Temperature-regulated expression of invasion genes in Shigella flexneri is controlled through the transcriptional activation of the virB gene on the large plasmid. Mol Microbiol5:887–893[CrossRef]
    [Google Scholar]
  33. Tobe T., Yoshikawa M., Mizuno T., Sasakawa C. 1993; Transcriptional control of the invasion regulatory gene virB of Shigella flexneri : activation by VirF and repression by H-NS. J Bacteriol175:6142–6149
    [Google Scholar]
  34. Venkatesan M. M., Goldberg M. B., Rose D. J., Grotbeck E. J., Burland V., Blattner F. R. 2001; Complete sequence and analysis of the large virulence plasmid of Shigella flexneri . Infect Immun69:3271–3285[CrossRef]
    [Google Scholar]
  35. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119[CrossRef]
    [Google Scholar]
  36. Zagaglia C., Casalino M., Colonna B., Conti C., Calconi A., Nicoletti M. 1991; Virulence plasmids of enteroinvasive Escherichia coli and Shigella flexneri integrate into a specific site on the host chromosome: integration greatly reduces expression of plasmid-carried virulence genes. Infect Immun59:792–799
    [Google Scholar]
  37. Zalkin H., Nygaard P. others 1996; Biosynthesis of purine nucleotides. In Escherichia coli and Salmonella thyphimurium: Cellular and Molecular Microbiology, 2nd edn. pp561–579 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Zychlinsky A., Thirumalai K., Arondel J., Cantey J. R., Aliprantis A. O., Sansonetti P. J. 1996; In vivo apoptosis in Shigella flexneri infections. Infect Immun64:5357–5365
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-8-2519
Loading
/content/journal/micro/10.1099/00221287-148-8-2519
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error