Diversity within genes of clinical variant isolates that occupy non-fusogenic inclusions

aThe GenBank accession numbers for the sequences reported in this paper can be found in Fig. 1 F1 .

Free

Abstract

The obligately intracellular chlamydiae are bacterial pathogens that occupy intracellular vacuoles, termed inclusions, as they develop and multiply. Typical isolates occupy inclusions that fuse with other inclusions within cells infected with multiple elementary bodies (wild-type phenotype). The authors of this study have recently described isolates that form multiply-lobed, non-fusogenic inclusions within single cells infected with multiple elementary bodies (variant phenotype). Inclusions formed by these isolates uniformly lacked the protein IncA on the inclusion membrane (IM). In the present work, the study of the inclusion phenotype has been expanded to include 27 variant and 13 wild-type isolates. Twenty-four of the 27 variant isolates were IncA-negative, as detected by fluorescence microscopy and immunoblotting, but three variants localized IncA to the IM. The IncA-positive variants formed inclusions that fused, at a reduced rate, with those occupied by wild-type isolates and with inclusions formed by other IncA-positive variants. Nucleotide-sequence analysis of the sequences from the variant isolates identified a variety of distinct sequence polymorphisms relative to from wild-type strains. The authors also demonstrate that a second Inc protein, CT223p, is not found in the IM in selected isolates. No change in the structure or the fusogenicity of the inclusions was associated with the presence or absence of CT223p.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2497
2002-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482497a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2497&mimeType=html&fmt=ahah

References

  1. Bannantine J. P., Rockey D. D., Hackstadt T. 1998a; Tandem genes of Chlamydia psittaci that encode proteins localized to the inclusion membrane. Mol Microbiol 28:1017–1026 [CrossRef]
    [Google Scholar]
  2. Bannantine J. P., Stamm W. E., Suchland R. J., Rockey D. D. 1998b; Chlamydia trachomatis IncA is localized to the inclusion membrane and is recognized by antisera from infected humans and primates. Infect Immun 66:6017–6021
    [Google Scholar]
  3. Bannantine J. P., Griffiths R. S., Viratyosin W., Brown W. J., Rockey D. D. 2000; A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Cell Microbiol 2:35–47 [CrossRef]
    [Google Scholar]
  4. Dean D., Patton M., Stephens R. S. 1991; Direct sequence evaluation of the major outer membrane protein gene variant regions of Chlamydia trachomatis subtypes D′, I′, and L2′. Infect Immun 59:1579–1582
    [Google Scholar]
  5. Fields K. A., Hackstadt T. 2000; Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol Microbiol 38:1048–1060
    [Google Scholar]
  6. Fling S. P., Sutherland R. A., Steele L. N., Hess B., D’Orazio S. E., Maisonneuve J., Lampe M. F., Probst P., Starnbach M. N. 2001; CD8+ T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis . Proc Natl Acad Sci USA 98:1160–1165 [CrossRef]
    [Google Scholar]
  7. Geisler W. M., Suchland R. J., Rockey D. D., Stamm W. E. 2001; Epidemiology and clinical manifestations of unique Chlamydia trachomatis isolates that occupy nonfusogenic inclusions. J Infect Dis 184:879–884 [CrossRef]
    [Google Scholar]
  8. Hackstadt T., Scidmore M. A., Rockey D. D. 1995; Lipid metabolism in Chlamydia trachomatis -infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci USA 92:4877–4881 [CrossRef]
    [Google Scholar]
  9. Hackstadt T., Rockey D. D., Heinzen R. A., Scidmore M. A. 1996; Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 15:964–977
    [Google Scholar]
  10. Hackstadt T., Scidmore-Carlson M. A., Shaw E. I., Fischer E. R. 1999; The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell Microbiol 1:119–130 [CrossRef]
    [Google Scholar]
  11. Hayes L. J., Bailey R. L., Mabey D. C. W., Clarke I. N., Pickett M. A., Watt P. J., Ward M. E. 1992; Genotyping of Chlamydia trachomatis from a trachoma-endemic village in the Gambia by a nested polymerase chain reaction: identification of strain variants. J Infect Dis 166:1173–1177 [CrossRef]
    [Google Scholar]
  12. Lampe M. F., Wong K. G., Kuehl L. M., Stamm W. E. 1997; Chlamydia trachomatis major outer membrane protein variants escape neutralization by both monoclonal antibodies and human immune sera. Infect Immun 65:317–319
    [Google Scholar]
  13. Pannekoek Y., van der Ende A., Eijk P. P., van Marle J., de Witte M. A., Ossewaarde J. M., van den Brule A. J., Morre S. A., Dankert J. 2001; Normal IncA expression and fusogenicity of inclusions in Chlamydia trachomatis isolates with the incA I47T mutation. Infect Immun 69:4654–4656 [CrossRef]
    [Google Scholar]
  14. Ridderhof J. C., Barnes R. C. 1989; Fusion of inclusions following superinfection of HeLa cells by two serovars of Chlamydia trachomatis . Infect Immun 57:3189–3193
    [Google Scholar]
  15. Rockey D. D., Rosquist J. L. 1994; Protein antigens of Chlamydia psittaci present in infected cells but not detected in the infectious elementary body. Infect Immun 62:106–112
    [Google Scholar]
  16. Rockey D. D., Heinzen R. A., Hackstadt T. 1995; Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells. Mol Microbiol 15:617–626
    [Google Scholar]
  17. Scidmore M. A., Hackstadt T. 2001; Mammalian 14-3-3β associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Mol Microbiol 39:1638–1650 [CrossRef]
    [Google Scholar]
  18. Scidmore-Carlson M. A., Shaw E. I., Dooley C. A., Fischer E. R., Hackstadt T. 1999; Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins. Mol Microbiol 33:753–765 [CrossRef]
    [Google Scholar]
  19. Stephens R. S., Kalman S., Lammel C. 9 other authors 1998; Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis . Science 282:754–759 [CrossRef]
    [Google Scholar]
  20. Suchland R. J., Stamm W. E. 1991; Simplified microtiter cell culture method for rapid immunotyping of Chlamydia trachomatis . J Clin Microbiol 29:1333–1338
    [Google Scholar]
  21. Suchland R. J., Rockey D. D., Bannantine J. P., Stamm W. E. 2000; Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Infect Immun 68:360–367 [CrossRef]
    [Google Scholar]
  22. Wang S. P., Kuo C. C., Barnes R. C., Stephens R. S., Grayston J. T. 1985; Immunotyping of Chlamydia trachomatis with monoclonal antibodies. J Infect Dis 152:791–800 [CrossRef]
    [Google Scholar]
  23. Yang C. L., Maclean I., Brunham R. C. 1993; DNA sequence polymorphism of the Chlamydia trachomatis omp1 gene. J Infect Dis 168:1225–1230 [CrossRef]
    [Google Scholar]
  24. Yuan Y., Lyng K., Zhang Y. X., Rockey D. D., Morrison R. P. 1992; Monoclonal antibodies define genus-specific, species-specific, and cross-reactive epitopes of the chlamydial 60-kilodalton heat shock protein (hsp60): specific immunodetection and purification of chlamydial hsp60. Infect Immun 60:2288–2296
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-8-2497
Loading
/content/journal/micro/10.1099/00221287-148-8-2497
Loading

Data & Media loading...

Most cited Most Cited RSS feed