Characterization of a new efflux pump, MexGHI-OpmD, from that confers resistance to vanadium Free

Abstract

Vanadium has an antibacterial activity against , especially under conditions of iron limitation. Some degree of resistance to V is inducible by prior exposure to the metal. One mutant (VS1) with a higher sensitivity to V was obtained by transposon mutagenesis of PA 59.20, a clinical isolate. This mutant had an insertion in a non-coding region, upstream of a cluster of four genes. Three of them show similarities to genes corresponding to known antibiotic efflux systems, including an efflux protein, a membrane fusion protein and an outer-membrane porin. This cluster was named -. By allelic exchange, three mutants, (for on-oding egion), and were constructed in PAO1. Next to V sensitivity, the , and mutants also showed reduced production of elastase, rhamnolipids, pyocyanine, pyoverdine and had reduced swarming motility, phenotypes that are known to be regulated by quorum sensing. All wild-type phenotypes, including growth in the presence of V, were restored by complementation with the complete cluster. The production of -acyl-homoserine lactones (AHLs) was detected using the bioassay. Total extracts from the three mutants failed to induce the production of violacein by , although AHLs were detected by TLC and overlay. Violacein production was restored by complementation with -. The mutant grew very slowly in LB or CAA medium, indicating that OpmD has an important physiological function for the cell. In conclusion, it is believed that the MexGHI-OpmD pump is probably involved in AHL homeostasis in

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2371
2002-08-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482371a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2371&mimeType=html&fmt=ahah

References

  1. Baysse C., De Vos D., Naudet Y., Vandermonde A., Ochsner U., Meyer J. M., Budzikiewicz H., Fuchs R., Cornelis P. 2000; Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa . Microbiology 146:2425–2434
    [Google Scholar]
  2. Bolivar F. 1978; Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique Eco RI sites for selection of Eco RI generated recombinant DNA molecules. Gene 4:121–136 [CrossRef]
    [Google Scholar]
  3. Bruins M. R., Kapil S., Oehme F. W. 2000; Microbial resistance to metals in the environment. Ecotox Environ Safety 45:198–207 [CrossRef]
    [Google Scholar]
  4. Cornelis P., Anjaiah V., Koedam N., Delfosse P., Jacques P., Thonart P., Neirinckx L. 1992; Stability, frequency and multiplicity of transposon insertions in the pyoverdine region in the chromosomes of different fluorescent pseudomonads. J Gen Microbiol 138:1337–1343 [CrossRef]
    [Google Scholar]
  5. De Kievit T. R., Iglewski B. H. 2000; Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849 [CrossRef]
    [Google Scholar]
  6. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative Eubacteria . J Bacteriol 172:6568–6572
    [Google Scholar]
  7. Diggle S. P., Winzer K., Lazdunski A., Williams P., Cámara M. 2002; Advancing the quorum in Pseudomonas aeruginosa : MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184:2576–2586 [CrossRef]
    [Google Scholar]
  8. Evans K., Passador L., Srikumar R., Tsang E., Nezezon J., Poole K. 1998; Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa . J Bacteriol 180:5443–5447
    [Google Scholar]
  9. Fukuda N., Yamase T. 1997; In vitro antibacterial activity of vanadate and vanadyl compounds against Streptococcus pneumoniae . Biol Pharm Bull 20:927–930 [CrossRef]
    [Google Scholar]
  10. Hassan M. T., van der Lelie D., Springael D., Römling U., Ahmed N., Mergeay M. 1999; Identification of a gene cluster, czr , involved in cadmium and zinc resistance in Pseudomonas aeruginosa . Gene 238:417–425 [CrossRef]
    [Google Scholar]
  11. Hernández A., Mellado R. P., Martı́nez J. L. 1998; Metal accumulation and vanadium-induced multidrug resistance by environmental isolates of Escherichia hermannii and Enterobacter cloacae . Appl Environ Microbiol 64:4317–4320
    [Google Scholar]
  12. Höfte M., Buysens S., Koedam N., Cornelis P. 1993; Zinc affects siderophore-mediated high-affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. BioMetals 6:85–91
    [Google Scholar]
  13. Holden I., Swift I., Williams I. 2000; New signal molecules on the quorum sensing block. Trends Microbiol 8:101–104 [CrossRef]
    [Google Scholar]
  14. Köhler T., Kok M., Michea-Hamzehpour M., Henze U., Gotoh N., Curty L. K., Pechère J. C. 1997; Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa . Mol Microbiol 23:345–354 [CrossRef]
    [Google Scholar]
  15. Köhler T., Curty L. K., Barja F., van Delden C., Pechère J. C. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996 [CrossRef]
    [Google Scholar]
  16. Köhler T., van Delden C., Curty L. K., Hamzehpour M. M., Pechère J. C. 2001; Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa . J Bacteriol 183:5213–5222 [CrossRef]
    [Google Scholar]
  17. Kovach M. E., Phillips W., Elzer P. H., Roop R. M., Peterson K. M. 1994; pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–801
    [Google Scholar]
  18. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A. 1996; A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146 [CrossRef]
    [Google Scholar]
  19. Li X.-Z., Barré N., Poole K. 2000; Influence of MexA-MexB-OprM multidrug efflux system on expression of the MexC-MexD-Opr J and MexE-MexF-OprN multidrug efflux systems in Pseudomonas aeruginosa . J Antimicrob Chemother 46:885–893 [CrossRef]
    [Google Scholar]
  20. Lim A. Jr, De Vos D., Brauns M., Mossialos D., Gaballa A., Qing D., Cornelis P. 1997; Molecular and immunological characterization of OprL, the 18 kDa outer membrane peptidoglycan-associated (PAL) lipoprotein of Pseudomonas aeruginosa . Microbiology 143:1709–1716 [CrossRef]
    [Google Scholar]
  21. Liochev S., Fridovich I. 1987; The oxidation of NADH by tetravalent vanadium. Arch Biochem Biophys 255:274–278 [CrossRef]
    [Google Scholar]
  22. Mavrodi D. V., Bonsall R. F., Delaney S. M., Soule M. J., Phillips G., Thomashow L. S. 2001; Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465 [CrossRef]
    [Google Scholar]
  23. McClean K. H., Kinson M. K., Fish L. 9 other authors 1997; Quorum sensing and Chromobacterium violaceum : exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711 [CrossRef]
    [Google Scholar]
  24. McKnight S. L., Iglewski B. H., Pesci E. C. 2000; The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol 182:2702–2708 [CrossRef]
    [Google Scholar]
  25. Meyer J. M., Stintzi A., De Vos D., Cornelis P., Tappe R., Taraz K., Budzikiewicz H. 1997; Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143:35–43 [CrossRef]
    [Google Scholar]
  26. Nies D. H. 1999; Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750 [CrossRef]
    [Google Scholar]
  27. Pattery T., Hernalsteens J. P., De Greve H. 1999; Identification and molecular characterization of a novel Salmonella enteritidis pathogenicity islet encoding an ABC transporter. Mol Microbiol 33:791–805 [CrossRef]
    [Google Scholar]
  28. Pattery T., Mondt K., Audenaert K., Höfte M., Cornelis P. 2001; Identification of phzM, a new phenazine biosynthesis gene necessary for the production of pyocyanine by Pseudomonas aeruginosa. Abstract presented at the Pseudomonas 2001 meetingBrussels, Belgium17–21 September 2001
    [Google Scholar]
  29. Pearson J. P., van Delden C., Iglewski B. H. 1999; Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210
    [Google Scholar]
  30. Pesci E. C., Iglewski B. H. 1997; The chain of command in Pseudomonas quorum sensing. Trends Microbiol 5:132–134 [CrossRef]
    [Google Scholar]
  31. Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., Iglewski B. H. 1999; Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa . Proc Natl Acad Sci USA 96:11229–11234 [CrossRef]
    [Google Scholar]
  32. Poole K. 2001a; Multidrug resistance in Gram-negative bacteria. Curr Opin Microbiol 4:500–508 [CrossRef]
    [Google Scholar]
  33. Poole K. 2001b; Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aerugin osa and related organisms. J Mol Microbiol Biotechnol 3:255–264
    [Google Scholar]
  34. Poole K., Gotoh N., Tsujimoto H., Zhao Q., Wada A., Yamasaki T., Neshat S., Yamagishi J., Li X. Z., Nishino T. 1996; Overexpression of the mexC - mexD - oprJ efflux operon in nfxB -type multidrug-resistant strains of Pseudomonas aeruginosa . Mol Microbiol 21:713–724 [CrossRef]
    [Google Scholar]
  35. Reimmann C., Ginet N., Michel L. 9 other authors 2002; Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923–932
    [Google Scholar]
  36. Rosen B. P. 1996; Bacterial resistance to heavy metals and metalloids. J Bioinorg Chem 1:273–277
    [Google Scholar]
  37. Rossbach S., Wilson T. L., Kukuk M. L., Carty H. A. 2000a; Elevated zinc induces siderophore biosynthesis genes and a zntA -like gene in Pseudomonas fluorescens . FEMS Microbiol Lett 191:61–70 [CrossRef]
    [Google Scholar]
  38. Rossbach S., Kukuk M. L., Wilson T. L., Feng S. F., Pearson M. M., Fisher M. A. 2000b; Cadmium-regulated gene fusions in Pseudomonas fluorescens . Environ Microbiol 2:373–382 [CrossRef]
    [Google Scholar]
  39. Rust L., Messing C. R., Iglewski B. H. 1994; Elastase assays. Methods Enzymol 235:554–562
    [Google Scholar]
  40. Siegmund I., Wagner F. 1991; New methods for detecting rhamnolipids excreted by Pseudomonas species during growth in mineral agar. BioTechniques 5:265–268
    [Google Scholar]
  41. Silver S., Phung L. T. 1996; Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789 [CrossRef]
    [Google Scholar]
  42. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:784–791 [CrossRef]
    [Google Scholar]
  43. Stintzi A., Evans K., Meyer J. M., Poole K. 1998; Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa : lasR / lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol Lett 166:341–345 [CrossRef]
    [Google Scholar]
  44. Stover C. K., Pham X. Q., Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  45. Tseng T. T., Gratwick K. S., Kollman J., Park D., Nies D. H., Goffeau A., Saier M. H. 1999; The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human diseases and development proteins. J Mol Microbiol Biotechnol 1:107–125
    [Google Scholar]
  46. van den Eede G., Deblaere R., Goethals K., van Montagu M., Holsters M. 1992; Broad-host-range and promoter selection vectors for bacteria that interact with plants. Mol Plant–Microbe Interact 5:228–234 [CrossRef]
    [Google Scholar]
  47. Van Haute E., Joos H., Maes M., Warren M., Van Montagu M. 1983; Intergenic transfer and recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmid of Agrobacterium tumefaciens . EMBO J 2:411–417
    [Google Scholar]
  48. Whiteley M., Lee K. M., Greenberg E. P. 1999; Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa . Proc Natl Acad Sci USA 96:13904–13909 [CrossRef]
    [Google Scholar]
  49. Whiteley M., Greenberg E. P. 2001; Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol 183:5529–5534 [CrossRef]
    [Google Scholar]
  50. Wilson K. 1990; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp 24.1–24.5 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. D., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  51. Winzer K., Falconer C., Garber N. C., Diggle S. P., Cámara M., Williams P. 2000; The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182:6401–6411 [CrossRef]
    [Google Scholar]
  52. Zgurskaya H. I., Nikaido H. 2000; Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 37:219–225 [CrossRef]
    [Google Scholar]
  53. Zhai Y., Saier M. H. 2001; A web-based program (WHAT) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology of a single protein sequence. J Mol Microbiol Biotechnol 3:501–502
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-8-2371
Loading
/content/journal/micro/10.1099/00221287-148-8-2371
Loading

Data & Media loading...

Most cited Most Cited RSS feed