1887

Abstract

A gene encoding sorbitol-6-phosphate dehydrogenase (SorF) belonging to the sorbose operon () has been characterized in . Inactivation of this gene revealed the presence of another sorbitol-6-phosphate dehydrogenase that was induced by D-sorbitol (D-glucitol). The gene encoding this activity () has also been isolated, sequenced and disrupted. The sorbitol-6-phosphate dehydrogenase genes (, ) were required for growth on L-sorbose and D-sorbitol, respectively. Biochemical and transcriptional analyses of the wild-type and mutant strains demonstrated that L-sorbose and D-sorbitol induced and the gene encoding the sorbose operon activator (), while the expression of was only activated by D-sorbitol. Furthermore, these studies indirectly suggested that a common metabolite of the L-sorbose and D-sorbitol metabolic pathways (probably D-sorbitol 6-phosphate) would act as the effector of SorR. The same effector would also be the inducer of , although the two pathways seem to be subject to distinct regulatory mechanisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2351
2002-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482351a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2351&mimeType=html&fmt=ahah

References

  1. Aldridge P., Metzger M., Geider K. 1997; Genetics of sorbitol metabolism in Erwinia amylovora and its influence on bacterial virulence. Mol Gen Genet 256:611–619 [CrossRef]
    [Google Scholar]
  2. Aso Y., Akazan H. 1992; Prophylactic effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer. Urol Int 49:125–129 [CrossRef]
    [Google Scholar]
  3. Boyd D. A., Thevenot T., Gumbmann M., Honeyman A. L., Hamilton I. R. 2000; Identification of the operon for the sorbitol (glucitol) phosphoenolpyruvate: sugar phosphotransferase system in Streptococcus mutans . Infect Immun 68:925–930 [CrossRef]
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  5. Chen J.-D., Morrison D. A. 1988; Construction and properties of a new insertion vector, pJDC9, that is protected by transcriptional terminators and useful for cloning of DNA from Streptococcus pneumoniae . Gene 64:155–164 [CrossRef]
    [Google Scholar]
  6. Forestier C., De Champs C., Vatoux C., Joly B. 2001; Probiotic activities of Lactobacillus casei rhamnosus : in vitro adherence to intestinal cells and antimicrobial properties. Res Microbiol 152:167–173 [CrossRef]
    [Google Scholar]
  7. Gosalbes M. J., Monedero V., Alpert C.-A., Pérez-Martı́nez G. 1997; Establishing a model to study the regulation of the lactose operon in Lactobacillus casei . FEMS Microbiol Lett 148:83–89 [CrossRef]
    [Google Scholar]
  8. Higuchi M., Yamamoto Y., Poole L. B., Shimada M., Sato Y., Takahashi N., Kamio Y. 1999; Functions of two types of NADH oxidases in energy metabolism and oxidative stress of Streptococcus mutans . J Bacteriol 181:5940–5947
    [Google Scholar]
  9. Leloup L., Ehrlich S. D., Zagorec M., Morel-Deville F. 1997; Single-crossover integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes. Appl Environ Microbiol 63:2117–2123
    [Google Scholar]
  10. Monedero V., Gosalbes M. J., Pérez-Martı́nez G. 1997; Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J Bacteriol 179:6657–6664
    [Google Scholar]
  11. Pedone C. A., Arnaud C. C., Postaire E. R., Bouley C. F., Reinert P. 2000; Multicentric study of the effect of milk fermented by Lactobacillus casei on the incidence of diarrhoea. Int J Clin Pract 54:568–571
    [Google Scholar]
  12. Posno M., Leer R. J., van Luijk N., van Giezen M. J. F., Heuvelmans P. T. H. M., Lokman B. C., Pouwels P. H. 1991; Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl Environ Microbiol 57:1822–1828
    [Google Scholar]
  13. Salminen S., Bouley C., Boutron-Ruault M. C. 7 other authors 1998; Functional food science and gastrointestinal physiology and function. Br J Nutr 80:suppl 1s147–s171 [CrossRef]
    [Google Scholar]
  14. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Shine J., Dalgarno L. 1974; The 3′ terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1342–1346 [CrossRef]
    [Google Scholar]
  16. Sprenger G. A., Lengeler J. W. 1984; L-sorbose metabolism in Klebsiella pneumoniae and Sor+derivatives of Escherichia coli K-12 and chemotaxis towards sorbose. J Bacteriol 157:39–45
    [Google Scholar]
  17. Tangney M., Brehm J. K., Minton N. P., Mitchell W. J. 1998; A gene system for glucitol transport and metabolism in Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol 64:1612–1619
    [Google Scholar]
  18. Veyrat A., Monedero V., Pérez-Martı́nez G. 1994; Glucose transport by the phosphoenolpyruvate: mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiology 140:1141–1149 [CrossRef]
    [Google Scholar]
  19. Viana R., Monedero V., Dossonnet V., Vadeboncoeur C., Pérez-Martı́nez G., Deutscher J. 2000; Enzyme I and HPr from Lactobacillus casei : their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol Microbiol 36:570–584
    [Google Scholar]
  20. Wehmeier U. F., Lengeler J. W. 1994; Sequence of the sor -operon for l-sorbose utilization from Klebsiella pneumoniae KAY2026. Biochim Biophys Acta 1208:348–351 [CrossRef]
    [Google Scholar]
  21. Wehmeier U. F., Nobelmann B., Lengeler J. W. 1992; Cloning of the Escherichia coli sor genes for l-sorbose transport and metabolism and physical mapping of the genes near metH and iclR . J Bacteriol 174:7784–7790
    [Google Scholar]
  22. Wehmeier U. F., Wöhrl B. M., Lengeler J. W. 1995; Molecular analysis of the phosphoenolpyruvate-dependent l-sorbose: phosphotransferase system from Klebsiella pneumoniae and of its multidomain structure. Mol Gen Genet 246:610–618 [CrossRef]
    [Google Scholar]
  23. Wöhrl B. M., Lengeler J. W. 1990; Cloning and physical mapping of the sor genes for l-sorbose transport and metabolism from Klebsiella pneumoniae . Mol Microbiol 4:1557–1565 [CrossRef]
    [Google Scholar]
  24. Yamada M., Saier M. H. Jr 1987; Physical and genetic characterization of the glucitol operon in Escherichia coli . J Bacteriol 169:2990–2994
    [Google Scholar]
  25. Yebra M. J., Veyrat A., Santos M. A., Pérez-Martı́nez G. 2000; Genetics of l-sorbose transport and metabolism in Lactobacillus casei . J Bacteriol 182:155–163 [CrossRef]
    [Google Scholar]
  26. Zeng X., Saxild H. H., Switzer R. L. 2000; Purification and characterization of the DeoR repressor of Bacillus subtilis . J Bacteriol 182:1916–1922 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-8-2351
Loading
/content/journal/micro/10.1099/00221287-148-8-2351
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error