1887

Abstract

Stable-isotope probing (SIP) is a culture-independent technique that enables the isolation of DNA from micro-organisms that are actively involved in a specific metabolic process. In this study, SIP was used to characterize the active methylotroph populations in forest soil (pH 3·5) microcosms that were exposed to CHOH or CH. Distinct C-labelled DNA (C-DNA) fractions were resolved from total community DNA by CsCl density-gradient centrifugation. Analysis of 16S rDNA sequences amplified from the C-DNA revealed that bacteria related to the genera , , and had assimilated the C-labelled substrates, which suggested that moderately acidophilic methylotroph populations were active in the microcosms. Enrichments targeted towards the active proteobacterial CHOH utilizers were successful, although none of these bacteria were isolated into pure culture. A parallel analysis of genes encoding the key enzymes methanol dehydrogenase and particulate methane monooxygenase reflected the 16S rDNA analysis, but unexpectedly revealed sequences related to the ammonia monooxygenase of ammonia-oxidizing bacteria (AOB) from the β-subclass of the . Analysis of AOB-selective 16S rDNA amplification products identified and sequences in the C-DNA fractions, suggesting certain AOB assimilated a significant proportion of CO, possibly through a close physical and/or nutritional association with the active methylotrophs. Other sequences retrieved from the C-DNA were related to the 16S rDNA sequences of members of the division, the β- and the order , which implicated these bacteria in the assimilation of reduced one-carbon compounds or in the assimilation of the by-products of methylotrophic carbon metabolism. Results from the CHOH and CH SIP experiments thus provide a rational basis for further investigations into the ecology of methylotroph populations

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2331
2002-08-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482331a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2331&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Amaral J. A., Knowles R. 1995; Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220 [CrossRef]
    [Google Scholar]
  3. Anthony C. 1982 The Biochemistry of Methylotrophs London: Academic Press;
    [Google Scholar]
  4. Barrie A., Prosser S. J. 1996; Automated analysis of light-element stable isotopes by isotope ratio mass spectrometry. In Mass Spectrometry of Soils pp 1–46 Edited by Boutton T. W., Yamasaki S.-i. New York: Marcel Dekker;
    [Google Scholar]
  5. Becking J.-H. 1984; Genus Beijerinckia Derx 1950. In Bergey’s Manual of Systematic Bacteriology pp 311–321 Edited by Krieg N. R. Baltimore: Williams & Wilkins;
    [Google Scholar]
  6. Bédard C., Knowles R. 1989; Physiology, biochemistry, and specific inhibitors of CH4, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(NH_{4}^{+}\) \end{document}, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84
    [Google Scholar]
  7. Boschker H. T. S., Nold S. C., Wellsbury P., Bos D., de Graaf W., Pel R., Parkes R. J., Cappenberg T. E. 1998; Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392:801–805 [CrossRef]
    [Google Scholar]
  8. Bremner J. M., Keeney D. R. 1966; Determination and isotope-ratio analysis of different forms of nitrogen in soils: III. Exchangable ammomium, nitrate, and nitrite by extraction-distillation methods. Soil Sci Soc Amer Proc 30:577–582 [CrossRef]
    [Google Scholar]
  9. Brown A. H. F., Iles M. A. 1991; Water chemistry profiles under four tree species at Gisburn, NW England. Forestry 64:169–185 [CrossRef]
    [Google Scholar]
  10. Chistoserdova L., Lidstrom M. E. 1997; Molecular and mutational analysis of a DNA region separating two methylotrophy gene clusters in Methylobacterium extorquens AM1. Microbiology 143:1729–1736 [CrossRef]
    [Google Scholar]
  11. Dedysh S. N., Panikov N. S., Tiedje J. M. 1998; Acidophilic methanotrophic communities from Sphagnum peat bogs. Appl Environ Microbiol 64:922–929
    [Google Scholar]
  12. Dedysh S. N., Liesack W., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Bares A. M., Panikov N. S., Tiedje J. M. 2000; Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969 [CrossRef]
    [Google Scholar]
  13. Dedysh S. N., Derakshani M., Liesack W. 2001; Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris . Appl Environ Microbiol 67:4850–4857 [CrossRef]
    [Google Scholar]
  14. Dedysh S. N., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Liesack W., Tiedje J. M. 2002; Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261
    [Google Scholar]
  15. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689 [CrossRef]
    [Google Scholar]
  16. Dunfield P. F., Liesack W., Henckel T., Knowles R., Conrad R. 1999; High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl Environ Microbiol 65:1009–1014
    [Google Scholar]
  17. Dunfield P. F., Yimga M. T., Dedysh S. N., Berger U., Liesack W., Heyer J. 2002; Isolation of a Methylocystis strain containing a novel pmoA- like gene. FEMS Microbiol Ecol in press
    [Google Scholar]
  18. Gray N. D., Head I. M. 2001; Linking genetic identity and function in communities of uncultured bacteria. Environ Microbiol 3:481–492 [CrossRef]
    [Google Scholar]
  19. Hanson R. S., Hanson T. E. 1996; Methanotrophic bacteria. Microbiol Rev 60:439–471
    [Google Scholar]
  20. Henckel T., Friedrich M., Conrad R. 1999; Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 65:1980–1990
    [Google Scholar]
  21. Henckel T., Jäckel U., Schnell S., Conrad R. 2000; Molecular analyses of novel methanotrophic communities in forest soils that oxidize atmospheric methane. Appl Environ Microbiol 66:1801–1808 [CrossRef]
    [Google Scholar]
  22. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. 1995; Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–308 [CrossRef]
    [Google Scholar]
  23. Holmes A. J., Roslev P., McDonald I. R., Iversen N., Henriksen K., Murrell J. C. 1999; Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65:3312–3318
    [Google Scholar]
  24. Hugenholtz P., Goebel B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774
    [Google Scholar]
  25. Imhoff J. F. 2001; Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen.nov., comb. nov. Int J Syst Evol Microbiol 51:1863–1866 [CrossRef]
    [Google Scholar]
  26. Kishimoto N., Kosako Y., Tano T. 1991; Acidobacterium capsulatum gen. nov. sp. nov. an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22:1–7 [CrossRef]
    [Google Scholar]
  27. Kowalchuk G. A., Stephen J. R., De Boer W., Prosser J. I., Embley T. M., Woldendorp J. W. 1997; Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63:1489–1497
    [Google Scholar]
  28. Lee N., Nielsen P. H., Andreasen K. H., Juretschko S., Nielsen J. L., Schleifer K.-H., Wagner M. 1999; Combination of fluorescent in situ hybridization and microautoradiography – a new tool for structure–function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297
    [Google Scholar]
  29. Lidstrom M. E. 1992; The aerobic methylotrophic bacteria. In The Prokaryotes pp 431–445 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer-Verlag;
    [Google Scholar]
  30. Lidstrom M. E., Anthony C., Biville F., Gasser F., Goodwin P., Hanson R. S., Harms N. 1994; New unified nomenclature for genes involved in the oxidation of methanol in Gram-negative bacteria. FEMS Microbiol Lett 117:103–106 [CrossRef]
    [Google Scholar]
  31. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K.-H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  32. Marmur J. 1961; A procedure for the isolation of DNA from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  33. McCaig A. E., Embley T. M., Prosser J. I. 1994; Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol Lett 120:363–367 [CrossRef]
    [Google Scholar]
  34. McDonald I. R., Murrell J. C. 1997; The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224
    [Google Scholar]
  35. Meselson M., Stahl F. W. 1958; The replication of DNA in Escherichia coli . Proc Natl Acad Sci USA 44:671–682 [CrossRef]
    [Google Scholar]
  36. Morris S. A., Radajewski S., Willison T. W., Murrell J. C. 2002; Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Appl Environ Microbiol 68:1446–1453 [CrossRef]
    [Google Scholar]
  37. Moulin L., Munive A., Dreyfus B., Boivin-Masson C. 2001; Nodulation of legumes by members of the β-subclass of Proteobacteria . Nature 411:948–950 [CrossRef]
    [Google Scholar]
  38. Murrell J. C., Gilbert B., McDonald I. R. 2000a; Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332 [CrossRef]
    [Google Scholar]
  39. Murrell J. C., McDonald I. R., Gilbert B. 2000b; Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8:221–225 [CrossRef]
    [Google Scholar]
  40. Nunn D. N., Lidstrom M. E. 1986; Isolation and complementation analysis of 10 methanol oxidation mutant classes and identification of the methanol dehydrogenase structural gene of Methylobacterium sp. strain AM1. J Bacteriol 166:581–590
    [Google Scholar]
  41. Orphan V. J., House C. H., Hinrichs K.-U., McKeegan K. D., DeLong E. F. 2001; Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487 [CrossRef]
    [Google Scholar]
  42. Ouverney C. C., Fuhrman J. A. 1999; Combined microautoradiography–16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ . Appl Environ Microbiol 65:1746–1752
    [Google Scholar]
  43. Radajewski S., Ineson P., Parekh N. R., Murrell J. C. 2000; Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649 [CrossRef]
    [Google Scholar]
  44. Reay D. S., Nedwell D. B., McNamara N. 2001a; Physical determinants of methane oxidation capacity in a temperate soil. Water Air Soil Pollut 1:401–414 [CrossRef]
    [Google Scholar]
  45. Reay D. S., Radajewski S., Murrell J. C., McNamara N., Nedwell D. B. 2001b; Effects of land-use on the activity and diversity of methane oxidizing bacteria in forest soils. Soil Biol Biochem 33:1613–1623 [CrossRef]
    [Google Scholar]
  46. Rolfe R., Meselson M. 1959; The relative homogeneity of microbial DNA. Proc Natl Acad Sci USA 45:1039–1043 [CrossRef]
    [Google Scholar]
  47. Roslev P., Iversen N. 1999; Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils. Appl Environ Microbiol 65:4064–4070
    [Google Scholar]
  48. Rotthauwe J.-H., Witzel K.-P., Liesack W. 1997; The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712
    [Google Scholar]
  49. Sambrook J., Fritsch E. F., Maniatis T. (editors) 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. vol. 1 Cold Spring Harbor; New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  50. Stephen J. R., McCaig A. E., Smith Z., Prosser J. I., Embley T. M. 1996; Molecular diversity of soil and marine 16S rRNA gene sequences related to β-subgroup ammonia-oxidizing bacteria. Appl Environ Microbiol 62:4147–4154
    [Google Scholar]
  51. Vinograd J. 1963; Sedimentation equilibrium in a buoyant density gradient. In Methods in Enzymology pp 854–870 Edited by Colowicker S. P., Kaplan N. O. London: Academic Press;
    [Google Scholar]
  52. Vorholt J. A., Chistoserdova L., Stolyar S. M., Thauer R. K., Lidstrom M. E. 1999; Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol 181:5750–5757
    [Google Scholar]
  53. Webster G., Embley T. M., Prosser J. I. 2002; Grassland management regimens reduce small-scale heterogeneity and species diversity of β-proteobacterial ammonia oxidizer populations. Appl Environ Microbiol 68:20–30 [CrossRef]
    [Google Scholar]
  54. Wendlandt K.-D., Jechorek M., Helm J., Stottmeister U. 2001; Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J Biotechnol 86:127–133 [CrossRef]
    [Google Scholar]
  55. Whitby C. B., Hall G., Pickup R., Saunders J. R., Ineson P., Parekh N. R., McCarthy A. 2001; 13C incorporation into DNA as a means of identifying the active components of ammonia-oxidizer populations. Lett Appl Microbiol 32:398–401 [CrossRef]
    [Google Scholar]
  56. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218 [CrossRef]
    [Google Scholar]
  57. Wintzingerode F. V., Gobel U. B., Stackebrandt E. 1997; Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229 [CrossRef]
    [Google Scholar]
  58. Yeates C., Gillings M. R. 1998; Rapid purification of DNA from soil for molecular biodiversity analysis. Lett Appl Microbiol 27:49–53 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-8-2331
Loading
/content/journal/micro/10.1099/00221287-148-8-2331
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error