Functional analysis of microbial communities in aerobic–anaerobic sequencing batch reactors fed with different phosphorus/carbon (P/C) ratios Free

Abstract

Fluorescence hybridization (FISH) was used to analyse the community composition of a sequencing batch reactor (SBR) operating with aerobic–anaerobic cycling and fed acetate as its sole carbon source. Phosphorus was removed from the SBR microbiologically. Marked shifts in the community structure occurred as the phosphorus/carbon (P/C) ratio in the feed was changed. When the P/C ratio was shifted from 1:10 to 1:50, FISH analysis showed that the percentage of β- fell from ca 77% of the total bacteria to ca 38%. This decrease in the β- coincided with a reduction in both the proportions of the β-proteobacterial -related phosphorus-accumulating bacteria and the biomass phosphorus content. FISH/microautoradiography and FISH/poly β-hydroxyalkanoate (PHA) staining showed that the -related bacteria assimilated acetate and synthesized PHAs anaerobically, and that they accumulated phosphorus aerobically. No spp. could be detected in any of the communities, casting further doubt on their role in phosphorus-removing activated sludge systems. As the feed P/C ratio decreased there was a corresponding increase in the proportion of α- and, to a smaller extent, in the proportion of γ-; both the α- and γ- consisted mostly of tetrad-forming cocci, fitting the description of the so-called ‘G-bacteria’ morphotype. The change in the proportions of present paralleled increases in the biomass glycogen content. Both the α- and β-proteobacterial ‘G-bacterial’ populations assimilated acetate and synthesized PHA anaerobically. The α- are considered responsible for glycogen production in these SBR systems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2299
2002-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482299a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2299&mimeType=html&fmt=ahah

References

  1. Amann R. I. 1995; In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual pp 1–15 Edited by Akkermans A. D. L., van Elsas J. D., de Bruin F. J. Dordrecht: Kluwer Academic;
    [Google Scholar]
  2. Amann R. I., Ludwig W., Schleifer K.-H. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
    [Google Scholar]
  3. Bond P. L., Hugenholtz P., Keller J., Blackall L. L. 1995; Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol 61:1910–1916
    [Google Scholar]
  4. Bond P. L., Erhart R., Wagner M., Keller J., Blackall L. L. 1999; Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl Environ Microbiol 65:4077–4084
    [Google Scholar]
  5. Cech J. S., Hartman P. 1993; Competition between polyphosphate- and polysaccharide-accumulating bacteria in enhanced biological phosphate removal systems. Water Res 27:1219–1225 [CrossRef]
    [Google Scholar]
  6. Crocetti G. R., Hugenholtz P., Bond P. L., Schuler A., Keller J., Jenkins D., Blackall L. L. 2000; Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66:1175–1182 [CrossRef]
    [Google Scholar]
  7. Crocetti G. R., Banfield J. F., Keller J., Bond P. L., Blackall L. L. 2001; The identification of glycogen accumulating organisms from a poorly-operating enhanced biological phosphorus removal laboratory-scale SBR. In Proceedings of the Third IWA International Conference on Microorganisms in Activated Sludge and Biofilm Processes, poster 172 on CD ROM Edited by Tandoi V., Passino R., Blundo C. M. Rome: CNR;
    [Google Scholar]
  8. Daims H., Brühl A., Amann R., Schleifer K.-H., Wagner M. 1999; The domain-specific probe EUB 338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444 [CrossRef]
    [Google Scholar]
  9. Falvo A., Levantesi C., Rossetti S., Seviour R. J., Tandoi V. 2001; Synthesis of intracellular storage polymers by Amaricoccus kaplicensis , a tetrad forming bacterium present in activated sludge. J Appl Microbiol 91:299–305 [CrossRef]
    [Google Scholar]
  10. Gray N. D., Head I. M. 2001; Linking genetic identity and function in communities of uncultured bacteria. Environ Microbiol 3:481–492 [CrossRef]
    [Google Scholar]
  11. Hesselmann R. P. X., Werlen C., Hahn D., van der Meer J. R., Zehnder A. J. B. 1999; Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst Appl Microbiol 22:454–465 [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Erhart R., Beimfohr C., Böhringer J., Wagner M., Amann R. 1996; Characterisation of bacterial communities from activated sludge: culture-dependent numerical identification versus in situ identification using group and genus-specific rRNA-targeted oligonucleotide probes. Microb Ecol 32:101–121
    [Google Scholar]
  13. Kawaharasaki M., Tanaka H., Kanagawa T., Nakamura K. 1999; In situ identification of polyphosphate-accumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotide probes and 4′,6-diamidino-2-phenylindol (DAPI) at a polyphosphate-probing concentration. Water Res 33:257–265 [CrossRef]
    [Google Scholar]
  14. Kong Y. H., Beer M., Seviour R. J., Lindrea K. C., Rees G. N. 2001; Structure and functional analysis of the microbial community in an aerobic: anaerobic sequencing batch reactor (SBR) with no phosphorus removal. Syst Appl Microbiol 24:597–609 [CrossRef]
    [Google Scholar]
  15. Lee N., Nielsen P. H., Andreasen K. H., Juretschko S., Nielsen J. L., Schleifer K.-H., Wagner M. 1999; Combination of fluorescent in situ hybridization and microautoradiography – a new tool for structure–function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297
    [Google Scholar]
  16. Lindrea K. C., Seviour E. M., Seviour R. J., Blackall L. L., Soddell J. A. 1999; Practical method for the examination and characterization of activated sludge. In The Microbiology of Activated Sludge pp 257–293 Edited by Seviour R. J., Blackall L. L. Dordrecht: Kluwer Academic;
    [Google Scholar]
  17. Liu W. T., Mino T., Nakamura K., Matsuo T. 1996; Glycogen-accumulating population and its anaerobic substrate uptake in anaerobic–aerobic activated sludge without biological phosphorus removal. Water Res 30:75–82 [CrossRef]
    [Google Scholar]
  18. Liu W. T., Nakamura K., Matsuo T., Mino T. 1997; Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors – effect of P/C feeding ratio. Water Res 31:1430–1438 [CrossRef]
    [Google Scholar]
  19. Liu W. T., Nielsen A. T., Wu J. H., Tsai C. S., Matsuo T., Molin S. 2001; In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ Microbiol 3:110–122 [CrossRef]
    [Google Scholar]
  20. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H. 1992; Phylogenetic oligonucleotide probes for the major subclasses of Proteobacteria : problems and solutions. Syst Appl Microbiol 15:593–600 [CrossRef]
    [Google Scholar]
  21. Maszenan A. M., Seviour R. J., Patel B. K. C., Rees G. N., McDougall B. M. 1997; Amaricoccus gen. nov., a Gram-negative coccus occurring in regular packages or tetrads, isolated from activated sludge biomass, and descriptions of Amaricoccus veronensis sp. nov., Amaricoccus tamworthensis sp. nov., Amaricoccus macauensis sp. nov., and Amaricoccus kaplicensis sp. nov. Int J Syst Bacteriol 47:727–734 [CrossRef]
    [Google Scholar]
  22. Maszenan A. M., Seviour R. J., Patel B. K. C., Schumann P., Burghardt J., Tokiwa Y., Stratton H. M. 2000a; Three isolates of novel polyphosphate-accumulating Gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp.nov. and Tetrasphaera australiensis sp. nov. Int J Syst Evol Microbiol 50:593–603 [CrossRef]
    [Google Scholar]
  23. Maszenan A. M., Seviour R. J., Patel B. K. C., Wanner J. 2000b; A fluorescently-labelled r-RNA targeted oligonucleotide probe for the in situ detection of G-bacteria of the genus Amaricoccus in activated sludge. J Appl Microbiol 88:826–835 [CrossRef]
    [Google Scholar]
  24. Meier H., Amann R., Ludwig W., Schleifer K.-H. 1999; Specific oligonucleotide probes for in situ detection of a major group of Gram-positive bacteria with low DNA G+C content. Syst Appl Microbiol 22:186–196 [CrossRef]
    [Google Scholar]
  25. Mino T., van Loosdrecht M. C. M., Heijnen J. J. 1998; Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32:3192–3207 [CrossRef]
    [Google Scholar]
  26. Neef A., Witzenberger R., Kämpfer P. 1999; Detection of sphingomonads and in situ identification in activated sludge using 16S rRNA-targeted oligonucleotide probes. J Ind Microbiol Biotechnol 23:261–267 [CrossRef]
    [Google Scholar]
  27. Nielsen A. T., Liu W. T., Filipe C., Grady L. Jr, Molin S., Stahl D. A. 1999; Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251–1258
    [Google Scholar]
  28. Roller C., Wagner M., Amann R., Ludwig W., Schleifer K.-H. 1994; In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology 140:2849–2858 [CrossRef]
    [Google Scholar]
  29. Seviour R. J., Maszenan A. M., Soddell J. A., Tandoi V., Patel B. K. C., Kong Y. H., Schumann P. 2000; Microbiology of the ‘G-bacteria’ in activated sludge. Environ Microbiol 2:581–593 [CrossRef]
    [Google Scholar]
  30. Shintani T., Liu W. T., Hanada S., Kamagata Y., Miyaoka S., Suzuki T., Nakamura K. 2000; Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 50:201–207 [CrossRef]
    [Google Scholar]
  31. Wagner M., Erhardt R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer K.-H. 1994; Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol 60:792–800
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-8-2299
Loading
/content/journal/micro/10.1099/00221287-148-8-2299
Loading

Data & Media loading...

Most cited Most Cited RSS feed