1887

Abstract

In the cyanobacterium sp. strain PCC 7942 a multigene family of three different isozymes encodes the proteolytic subunit ClpP of the ATP-dependent Clp protease. In contrast to the monocistronic gene, and are part of two bicistronic operons with and , respectively. Unlike most bacterial Clp proteins, the ClpP2, ClpP3, ClpR and ClpX proteins were not highly inducible by high temperatures, or by other stresses such as cold, high light or oxidation, although slower gradual rises occurred for all four proteins during high light, and for ClpP3, ClpR and ClpX at low temperature. Attempts to inactivate the , , or genes were only successful for , suggesting the others are essential for cell viability. The Δ mutant exhibited no significant phenotypic changes from the wild-type, including no change in ClpX content. Despite the apparent bicistronic arrangement of both - and -, all four genes primarily produce monocistronic transcripts, although polycistronic transcripts were detected. Mapping of 5′ ends for the and monocistronic transcripts revealed promoters situated within the 3′ region of and , respectively. Transcriptional and translational studies further showed differences in the expression and regulation between the -- genes. Inactivation of caused a significant decrease in ClpP2 protein concomitant to small increases in both ClpP3 and ClpR. Inactivation of resulted in a large rise in transcripts but to a lesser extent in ClpP1 protein. Similar small increases in ClpP3, ClpR and ClpX proteins also occurred in Δ. These results highlight the regulatory complexity of these multiple genes and their functional importance in cyanobacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-2255
2002-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1482255a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-2255&mimeType=html&fmt=ahah

References

  1. Adam Z., Adamska I., Nakabayashi K. 8 other authors 2001; Chloroplast and mitochondrial proteases in Arabidopsis thaliana : a proposed nomenclature. Plant Physiol 125:1912–1918 [CrossRef]
    [Google Scholar]
  2. Clarke A. K. 1999; ATP-dependent Clp proteases in photosynthetic organisms – a cut above the rest!. Ann Bot 83:593–599 [CrossRef]
    [Google Scholar]
  3. Clarke A. K., Campbell D. 1996; Inactivation of the petE gene for plastocyanin lowers photosynthetic capacity and exacerbates chilling-induced photoinhibition in the cyanobacterium Synechococcus . Plant Physiol 112:1551–1561 [CrossRef]
    [Google Scholar]
  4. Clarke A. K., Eriksson M.-J. 1996; The cyanobacterium Synechococcus sp. PCC 7942 possesses a close homologue to the chloroplast ClpC protein of higher plants. Plant Mol Biol 31:721–730 [CrossRef]
    [Google Scholar]
  5. Clarke A. K., Soitamo A., Gustafsson P., Öquist G. 1993; Rapid interchange between two distinct forms of cyanobacterial photosystem II reaction-center protein D1 in response to photoinhibition. Proc Natl Acad Sci USA 90:9973–9977 [CrossRef]
    [Google Scholar]
  6. Clarke A. K., Campbell D., Gustafsson P., Öquist G. 1995; Dynamic responses of the photosystem II reaction centre and phycobilisome to changing light intensity in the cyanobacterium Synechococcus sp. PCC 7942. Planta 197:553–562
    [Google Scholar]
  7. Clarke A. K., Schelin J., Porankiewicz J. 1998; Inactivation of the clpPI gene for the proteolytic subunit of the ATP-dependent Clp protease in the cyanobacterium Synechococcus limits growth and light acclimation. Plant Mol Biol 37:791–801 [CrossRef]
    [Google Scholar]
  8. de Crécy-Lagard V., Servant-Moisson P., Viala J., Grandvalet C., Mazodier P. 1999; Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces . Mol Microbiol 32:505–517 [CrossRef]
    [Google Scholar]
  9. Eriksson M.-J., Clarke A. K. 1996; The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 178:4839–4846
    [Google Scholar]
  10. Gottesman S. 1996; Proteases and their targets in Escherichia coli . Annu Rev Genet 30:465–506 [CrossRef]
    [Google Scholar]
  11. Gottesman S., Clark W. P., de Crecy-Lagard V., Maurizi M. R. 1993; ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli . J Biol Chem 268:22618–22626
    [Google Scholar]
  12. Gottesman S., Roche E., Zhou Y. N., Sauer R. T. 1998; The ClpX and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging. Genes Dev 12:1338–1347 [CrossRef]
    [Google Scholar]
  13. Grimaud R., Kessel M., Beuron F., Stevens A. C. 1998; Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases. ClpXP and ClpAP. J Biol Chem 273:12476–12481 [CrossRef]
    [Google Scholar]
  14. Gupta R. S. 1998; Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491
    [Google Scholar]
  15. Halperin T., Zheng B., Itzhaki H., Clarke A. K., Adam Z. 2001; Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease. Plant Mol Biol 45:461–468 [CrossRef]
    [Google Scholar]
  16. Huang C., Wang S., Chen L., Lemieux C., Otis C., Turmel M., Liu X.-Q. 1994; The Chlamydomonas chloroplast clpP gene contains translated large insertion sequences and is essential for cell growth. Mol Gen Genet 244:151–159
    [Google Scholar]
  17. Jenal U., Fuchs T. 1998; An essential protease involved in bacterial cell-cycle control. EMBO J 17:5658–5669 [CrossRef]
    [Google Scholar]
  18. Kaneko T., Sato S., Kotani H. 21 other authors 1996; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. DNA Res 3:109–136 [CrossRef]
    [Google Scholar]
  19. Kroh H. E., Simon L. D. 1990; The ClpP component of Clp protease is the σ32-dependent heat shock protein F21.5. J Bacteriol 172:6026–6034
    [Google Scholar]
  20. Levchenko I., Luo L., Baker T. A. 1995; Disassembly of the Mu transposase tetramer by the ClpX chaperone. Gene Dev 9:2399–2408 [CrossRef]
    [Google Scholar]
  21. Maurizi M. R., Clark W. P., Katayama Y., Rudikoff S., Pumphrey J., Bowers B., Gottesman S. 1990a; Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli . J Biol Chem 265:12536–12545
    [Google Scholar]
  22. Maurizi M. R., Clark W. P., Kim S.-H., Gottesman S. 1990b; ClpP represents a unique family of serine proteases. J Biol Chem 265:12546–12552
    [Google Scholar]
  23. Msadek T., Dartois V., Kunst F., Herbaud M.-L., Denizot F., Rapoport G. 1998; ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 27:899–914 [CrossRef]
    [Google Scholar]
  24. Österås M., Stotz A., Shmid Nuoffer S., Jenal U. 1999; Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease. J Bacteriol 181:3039–3050
    [Google Scholar]
  25. Porankiewicz J., Schelin J., Clarke A. K. 1998; The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus. Mol Microbiol 29. 275–284 [CrossRef]
  26. Porankiewicz J., Wang J., Clarke A. K. 1999; New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 32:449–458 [CrossRef]
    [Google Scholar]
  27. Riggs P. 1990; Expression and purification of maltose-binding protein fusions. In Current Protocols in Molecular Biology pp 1–14 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Greene Publishing Associates;
    [Google Scholar]
  28. Rohrwild M., Pfeifer G., Santarious U., Mueller S. A., Huang H. C., Engel A., Baumeister W., Goldberg A. L. 1997; The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat Struct Biol 4:133–139 [CrossRef]
    [Google Scholar]
  29. Shanklin J., DeWitt N. D., Flanagan J. M. 1995; The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpC: an archetypal two-component ATP-dependent protease. Plant Cell 7:1713–1722
    [Google Scholar]
  30. Shapira S. K., Chou J., Richaud F. V., Casadaban M. J. 1983; New versatile plasmid vectors for expression of hybrid proteins coded by a cloned gene fused to lacZ gene sequences encoding an enzymatically active carboxy-terminal portion of β-galactosidase. Gene 25:71–82 [CrossRef]
    [Google Scholar]
  31. Shikanai T., Shimizu K., Ueda K., Nishimura Y., Kuroiwa T., Hashimoto T. 2001; The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol 42:264–273 [CrossRef]
    [Google Scholar]
  32. Singh S. K., Grimaud R., Hoskins J. R., Wickner S., Maurizi M. R. 2000; Unfolding and internalization of proteins by ClpXP and ClpAP. Proc Natl Acad Sci USA 97:8898–8903 [CrossRef]
    [Google Scholar]
  33. van der Plas J., Hegeman H., de Vrieze G., Tuyl M., Borrias M., Weisbeek P. 1990; Genomic integration system based on pBR322 sequences for cyanobacterium Synechococcus sp. PCC 7942: transfer of genes encoding plastocyanin and ferredoxin. Gene 95:39–48 [CrossRef]
    [Google Scholar]
  34. Viala J., Rapoport G., Mazodier P. 2000; The clp multigenic family in Streptomyces lividans : conditional expression of the clpPIII clpP4 operon is controlled by PopR, a novel transcriptional activator. Mol Microbiol 38:602–612 [CrossRef]
    [Google Scholar]
  35. Völker U., Engelmann S., Maul B., Riethdorf S., Völker A., Schmid R., Mach H., Hecker M. 1994; Analysis of the induction of general stress proteins of Bacillus subtilis . Microbiology 140:741–752 [CrossRef]
    [Google Scholar]
  36. Wang J., Hartling J. A., Flanagan J. M. 1997; The structure of ClpP at 2·3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 91:447–456 [CrossRef]
    [Google Scholar]
  37. Wiegert T., Schumann W. 2001; SsrA-mediated tagging in Bacillus subtilis . J Bacteriol 183:3885–3889 [CrossRef]
    [Google Scholar]
  38. Yamamoto T., Sashinami H., Takaya A., Tomoyasu T., Matsui H., Kikuchi Y., Hanawa T., Kamiya S., Nakane A. 2001; Disruption of the genes for ClpXP protease in Salmonella enterica serovar Typhimurium results in persistent infection in mice, and development of persistence requires endogenous gamma interferon and tumor necrosis factor alpha. Infect Immun 69:3164–3174 [CrossRef]
    [Google Scholar]
  39. Yoo S. J., Seol J. H., Kang M.-S., Ha D. B., Chung C. H. 1994; clpX encoding an alternative ATP-binding subunit of protease Ti (Clp) can be expressed independently from clpP in Escherichia coli . Biochem Biophys Res Commun 203:798–804 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-2255
Loading
/content/journal/micro/10.1099/00221287-148-7-2255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error