1887

Abstract

A 0·5 kb fragment of ISP5230 genomic DNA was amplified by PCR using primers based on consensus sequences of cysteine synthase isozyme A from bacteria. The deduced amino acid sequence of the PCR product resembled not only cysteine synthase sequences from prokaryotes and eukaryotes but also eukaryotic cystathionine β-synthase sequences. Probing an genomic library with the PCR product located a hybridizing colony from which pJV207 was isolated. Sequencing and analysis of the DNA insert in pJV207 detected two ORFs. The deduced amino acid sequence of ORF1 matched both cysteine synthase and cystathionine β-synthase sequences in GenBank, but its size favoured assignment as a cystathionine β-synthase. ORF2 in the pJV207 insert was unrelated in function to ORF1; in its sequence the deduced product resembled acetyl-CoA transferases, but disruption of the ORF did not cause a detectable phenotypic change. Disruption of ORF1 failed to elicit cysteine auxotrophy in wild-type , but in the auxotroph VS263 it prevented restoration of prototrophy with homocysteine or methionine supplements. The change in phenotype implicated loss of the transsulfuration activity that in the wild-type converts these supplements to cysteine. This study concludes that disruption of ORF1 inactivates a gene, the product of which participates in cysteine synthesis by transsulfuration. Enzyme assays of mycelial extracts confirmed the formation of cysteine by thiolation of acetylserine, providing the first unambiguous detection of this activity in a streptomycete. Enzyme assays also detected cystathionine γ-synthase, cystathionine β-lyase and cystathionine γ-lyase activity in the extracts and showed that the substrate for cystathionine γ-synthase was succinyl-homoserine. Based on assay results, the mutation in VS263 does not inactivate the cysteine synthase gene but impairs expression in cultures grown in minimal medium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-2135
2002-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1482135a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-2135&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Brown M. P., Aidoo K. A., Vining L. C. 1996; A role for pabAB , a p -aminobenzoate synthase gene of Streptomyces venezuelae ISP5230, in chloramphenicol biosynthesis. Microbiology 142:1345–1355 [CrossRef]
    [Google Scholar]
  3. Chang Z., Sun Y., He J., Vining L. C. 2001; p- Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae : gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Microbiology 147:2113–2126
    [Google Scholar]
  4. Cherest H., Surdin-Kerjan Y. 1992; Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae : updating of the sulfur metabolism pathway. Genetics 130:51–58
    [Google Scholar]
  5. Cole S. T., Brosch R., Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  6. Cole S. T., Honoure N., Eiglmeier K. 2000; Preliminary analysis of the genome sequence of Mycobacterium leprae . Lepr Rev 71:SupplS162–S164 discussion S164–S167
    [Google Scholar]
  7. Devereux J., Haeberle P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  8. Dobric N., Limsowtin G. K., Hillier A. J., Dudman N. P., Davidson B. E. 2000; Identification and characterization of a cystathionine β/γ-lyase from Lactococcus lactis ssp. cremoris MG1363. FEMS Microbiol Lett 182:249–254
    [Google Scholar]
  9. Donadio S., Shafiee A., Hutchinson C. R. 1990; Disruption of a rhodanese-like gene results in cysteine auxotrophy in Saccharopolyspora erythraea . J Bacteriol 172:350–360
    [Google Scholar]
  10. Doull J., Ahmed Z., Stuttard C., Vining L. C. 1985; Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis. J Gen Microbiol 131:97–104
    [Google Scholar]
  11. Doull J. L., Vats S., Chaliciopoulos M., Stuttard C., Wong K., Vining L. C. 1986; Conjugational fertility and location of chloramphenicol biosynthesis genes on the chromosomal linkage map of Streptomyces venezuelae . J Gen Microbiol 132:1327–1338
    [Google Scholar]
  12. Foglino M., Borne F., Bally M., Ball G., Patte J. C. 1995; A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa . Microbiology 141:431–439 [CrossRef]
    [Google Scholar]
  13. Gaitonde M. K. 1967; A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633
    [Google Scholar]
  14. Greene R. C. others 1997; . Biosynthesis of methionine. In Escherichia coli and Salmonella typhimurium pp 542–560 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Gunther E., Petruschka L., Herrmann H. 1979; Reverse transsulfuration pathway in Pseudomonas aeruginosa . Z Allg Mikrobiol 19:439–442 [CrossRef]
    [Google Scholar]
  16. He J., Magarvey N., Piraee M., Vining L. C. 2001; The gene cluster for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 includes novel shikimate pathway homologues and a monomodular nonribosomal peptide synthetase gene. Microbiology 147:2817–2829
    [Google Scholar]
  17. Hensel G., Trüper H. G. 1976; Cysteine and S- sulfocysteine biosynthesis in phototrophic bacteria. Arch Microbiol 109:101–103 [CrossRef]
    [Google Scholar]
  18. Hopwood D. A., Bibb M. J., Chater K. F. 7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  19. Hulanicka M. D., Garrett C., Jagura-Burdzy G., Kredich N. M. 1986; Cloning and characterization of the cysAMK region of Salmonella typhimurium . J Bacteriol 168:322–327
    [Google Scholar]
  20. Ishikawa J., Hotta K. 1999; FramePlot: a new implementation of the Frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content. FEMS Microbiol Lett 174:252–253
    [Google Scholar]
  21. Kanzaki H., Kobayashi M., Nagasawa T., Yamada H. 1986; Distribution of two kinds of cystathionine γ-synthase in various bacteria. FEMS Microbiol Lett 33:65–68
    [Google Scholar]
  22. Kern B. A., Inamine E. 1981; Cystathionine γ-lyase activity in the cephamycin C producer Streptomyces lactamdurans . J Antibiot 34:583–589 [CrossRef]
    [Google Scholar]
  23. Kitano K., Nozaki Y., Imada A. 1985; Selective accumulation of unsulfated carbapenem antibiotics by sulfate transport-negative mutants of Streptomyces griseus subsp. cryophilus C-19393. Agric Biol Chem 49:677–684 [CrossRef]
    [Google Scholar]
  24. Kredich N. M. others 1997; Biosynthesis of cysteine. In Escherichia coli and Salmonella typhimurium pp 514–527 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Larson J. L., Hershberger C. L. 1986; The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid 15:199–209 [CrossRef]
    [Google Scholar]
  26. Lydiate D. J., Mendez C., Kieser H. M., Hopwood D. A. 1988; Mutation and cloning of clustered Streptomyces genes essential for sulphate metabolism. Mol Gen Genet 211:415–423 [CrossRef]
    [Google Scholar]
  27. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68 [CrossRef]
    [Google Scholar]
  28. Muller R., Kuttler E., Lanz C., Drewke C., Schmidt K. 1996; Isolation of a gene encoding cysteine synthase from Flavobacterium K3-15. FEMS Microbiol Lett 136:305–308
    [Google Scholar]
  29. Nagai S., Flavin M. 1967; Acetylhomoserine: an intermediate in the fungal biosynthesis of methionine. J Biol Chem 242:3884–3895
    [Google Scholar]
  30. Nagasawa T., Kanzaki H., Yamada H. 1984; Cystathionine γ-lyase of Streptomyces phaeochromogenes : the occurrence of cystathionine γ-lyase in filamentous bacteria and its purification and characterization. J Biol Chem 259:10393–10403
    [Google Scholar]
  31. Nakamura T., Iwahashi H., Eguchi Y. 1984; Enzymatic proof for the identity of the S- sulfocysteine synthase and cysteine synthase B of Salmonella typhimurium . J Bacteriol 158:1122–1127
    [Google Scholar]
  32. Nicholson M. L., Gaasenbeek M., Laudenbach D. E. 1995; Two enzymes together capable of cysteine biosynthesis are encoded on a cyanobacterial plasmid. Mol Gen Genet 247:623–632 [CrossRef]
    [Google Scholar]
  33. O’Gara J. P., Gomelsky M., Kaplan S. 1997; Identification and molecular genetic analysis of multiple loci contributing to high-level tellurite resistance in Rhodobacter sphaeroides 2.4.1. Appl Environ Microbiol 63:4713–4720
    [Google Scholar]
  34. Ohmori S., Nakata K., Nishihara K., Yamamoto S., Kawase M., Tsuboi S. 1992; Sensitive determination of cystathionine and assays for cystathionine β- and γ-lyase, as well as cystathionine β-synthase, using high-performance liquid chromatography. J Chromatogr 574:35–40 [CrossRef]
    [Google Scholar]
  35. Osaki M., Takamatsu D., Tsuji N., Sekizaki T. 2000; Cloning and characterization of the gene encoding O- acetylserine lyase from Streptococcus suis . Curr Microbiol 40:67–71 [CrossRef]
    [Google Scholar]
  36. Paradkar A. S., Jensen S. E. 1995; Functional analysis of the gene encoding the clavaminate synthase 2 isoenzyme involved in clavulanic acid biosynthesis in Streptomyces clavuligerus . J Bacteriol 1771307–1314
    [Google Scholar]
  37. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96 [CrossRef]
    [Google Scholar]
  38. Rege V. D., Kredich N. M., Tai C. H., Karsten W. E., Schnackerz K. D., Cook P. F. 1996; A change in the internal aldimine lysine (K42) in O- acetylserine sulfhydrylase to alanine indicates its importance in transimination and as a general base catalyst. Biochemistry 35:13485–13493 [CrossRef]
    [Google Scholar]
  39. Rosenberg M., Court D. 1979; Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13:319–353 [CrossRef]
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Sekar V. 1987; A rapid screening procedure for identification of recombinant bacterial clones. Biotechniques 5:11–13
    [Google Scholar]
  42. Sirko A. E., Zatyka M., Hulanicka M. D. 1987; Identification of the Escherichia coli cysM gene encoding O- acetylserine sulphydrylase B by cloning with mini-Mu-lac containing a plasmid replicon. J Gen Microbiol 133:2719–2725
    [Google Scholar]
  43. Stover C. K., Pham X. Q., Erwin A. L. 23 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  44. Stuttard C. 1982; Temperate phage of Streptomyces venezuelae : lysogeny and host specificity shown by phageSV1 and SV2. J Gen Microbiol 128:115–121
    [Google Scholar]
  45. Stuttard C. 1988; Transduction and genomic structure in Streptomyces . Dev Ind Microbiol 29:69–75
    [Google Scholar]
  46. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  47. Vats S., Stuttard C., Vining L. C. 1987; Transductional analysis of chloramphenicol biosynthesis genes in Streptomyces venezuelae . J Bacteriol 169:3809–3813
    [Google Scholar]
  48. Vining L. C., Stuttard C. 1994; Chloramphenicol. In Genetics and Biochemistry of Antibiotic Production pp 505–530 Edited by Vining L. C., Stuttard C. Newton, MA: Butterworth-Heinemann;
    [Google Scholar]
  49. Wang L., McVey J., Vining L. C. 2001; Cloning and functional analysis of a phosphopantetheinyl transferase superfamily gene associated with jadomycin biosynthesis in Streptomyces venezuelae ISP5230. Microbiology 147:1535–1545
    [Google Scholar]
  50. Whitney J. G., Brannon D. R., Mabe J. A., Wicker K. J. 1972; Incorporation of labelled precursors into A16886B, a novel β-lactam antibiotic produced by Streptomyces clavuligerus . Antimicrob Agents Chemother 1:247–251 [CrossRef]
    [Google Scholar]
  51. Wright F., Bibb M. J. 1992; Codon usage in the G+C-rich Streptomyces genome. Gene 113:55–65 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-2135
Loading
/content/journal/micro/10.1099/00221287-148-7-2135
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error