1887

Abstract

The gene family of is composed of 10 members. They encode proteins of about 240 amino acids which contain two predicted transmembrane domains. Database searches identified only one homologue in the closely related species , indicating that the genes encode proteins specific to . The short-flanking homology PCR gene-replacement strategy with a variety of selective markers for replacements, and classical genetic methods, were used to generate strains deleted for all 10 genes. All of the knock-out strains were viable and had similar growth kinetics to the wild-type. Two-hybrid screens, hSos1p fusions and GFP fusions were carried out; the results indicated that the Dup240 proteins are membrane associated, and that some of them are concentrated around the plasma membrane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-2111
2002-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1482111a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-2111&mimeType=html&fmt=ahah

References

  1. Arabidopsis Genome Initiative 2000; Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature 408:796–815 [CrossRef]
    [Google Scholar]
  2. Aronheim A., Engelberg D., Li N., al-Alawi N., Schlessinger J., Karin M. 1994; Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78:949–961 [CrossRef]
    [Google Scholar]
  3. Aronheim A., Zandi E., Hennemann H., Elledge S. J., Karin M. 1997; Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol Cell Biol 17:3094–3102
    [Google Scholar]
  4. Bartel P. L., Chien C. T., Sternglanz R., Fields S. 1993a; Using the two-hybrid system to detect protein-protein interactions. In Cellular Interactions in Development: a Practical Approach pp 153–179 Edited by Hartley D. A. Oxford: Oxford University Press;
    [Google Scholar]
  5. Bartel P. L., Chien C. T., Sternglanz R., Fields S. 1993b; Elimination of false positives that arise in using the two-hybrid system. Biotechniques 14:920–924
    [Google Scholar]
  6. Barton A. B., Bussey H., Storms R. K., Kaback D. B. 1997; Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae : characterization of the 54 kb right terminal CDC15-FLO1-PHO11 region. Yeast 13:1251–1263 [CrossRef]
    [Google Scholar]
  7. Beh C. T., Cool L., Phillips J., Rine J. 2001; Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics 157:1117–1140
    [Google Scholar]
  8. Bendixen C., Gangloff S., Rothstein R. 1994; A yeast mating-selection scheme for detection of protein-protein interactions. Nucleic Acids Res 22:1778–1779 [CrossRef]
    [Google Scholar]
  9. Blandin G., Durrens P., Tekaia F. 19 other authors 2000; Genomic exploration of the hemiascomycetous yeasts. 4. The genome of Saccharomyces cerevisiae revisited. FEBS Lett 487:31–36 [CrossRef]
    [Google Scholar]
  10. Bon E., Neuveglise C., Casaregola S., Artiguenave F., Wincker P., Aigle M., Durrens P. 2000; Genomic exploration of the hemiascomycetous yeasts. 5. Saccharomyces bayanus var. uvarum . FEBS Lett 487:37–41 [CrossRef]
    [Google Scholar]
  11. Brachmann C. B., Davies A., Cost G. J., Caputo E., Li J., Hieter P., Boeke J. D. 1998; Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132 [CrossRef]
    [Google Scholar]
  12. Chardin P., Camonis J. H., Gale N. W., van Aelst L., Schlessinger J., Wigler M. H., Bar-Sagi D. 1993; Human Sos1: a guanine nucleotide exchange factor for Ras that binds to Grb2. Science 260:1338–1343 [CrossRef]
    [Google Scholar]
  13. Delneri D., Gardner D. C., Bruschi C. V., Oliver S. G. 1999; Disruption of seven hypothetical aryl alcohol dehydrogenase genes from Saccharomyces cerevisiae and construction of a multiple knock-out strain. Yeast 15:1681–1689 [CrossRef]
    [Google Scholar]
  14. Dujon B. 1998; European Functional Analysis Network (EUROFAN) and the functional analysis of the Saccharomyces cerevisiae genome. Electrophoresis 19:617–624 [CrossRef]
    [Google Scholar]
  15. Eng W. K., Faucette L., McLaughlin M. M., Cafferkey R., Koltin Y., Morris R. A., Young P. R., Johnson R. K., Livi G. P. 1994; The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth. Gene 151:61–71 [CrossRef]
    [Google Scholar]
  16. Fairhead C., Thierry A., Denis F., Eck M., Dujon B. 1998; ‘Mass-murder’ of ORFs from three regions of chromosome XI from Saccharomyces cerevisiae . Gene 223:33–46 [CrossRef]
    [Google Scholar]
  17. Feuermann M., de Montigny J., Potier S., Souciet J. L. 1997; The characterization of two new clusters of duplicated genes suggests a ‘Lego’ organization of the yeast Saccharomyces cerevisiae chromosomes. Yeast 13:861–869 [CrossRef]
    [Google Scholar]
  18. Fields S., Song O. 1989; A novel genetic system to detect protein-protein interactions. Nature 340:245–246 [CrossRef]
    [Google Scholar]
  19. Fromont-Racine M., Rain J. C., Legrain P. 1997; Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet 16:277–282 [CrossRef]
    [Google Scholar]
  20. Georgakopoulos T., Koutroubas G., Vakonakis I., Tzermia M., Prokova V., Voutsina A., Alexandraki D. 2001; Functional analysis of the Saccharomyces cerevisiae YFR021w/YGR223c/YPL100w ORF family suggests relations to mitochondrial/peroxisomal functions and amino acid signalling pathways. Yeast 18:1155–1171 [CrossRef]
    [Google Scholar]
  21. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A. 1995; Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360 [CrossRef]
    [Google Scholar]
  22. Goffeau A., Park J., Paulsen I. T., Jonniaux J. L., Dinh T., Mordant P., Saier M. H. 1997; Multidrug-resistant transport proteins in yeast: complete inventory and phylogenetic characterization of yeast open reading frames with the major facilitator superfamily. Yeast 13:43–54 [CrossRef]
    [Google Scholar]
  23. Hadwiger J. A., Wittenberg C., Mendenhall M. D., Reed S. I. 1989; The Saccharomyces cerevisiae CKS1 gene, a homolog of the Schizosaccharomyces pombe suc1 + gene, encodes a subunit of the Cdc28 protein kinase complex. Mol Cell Biol 9:2034–2041
    [Google Scholar]
  24. Hoffman C. S., Winston F. 1987; A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli . Gene 57:267–272 [CrossRef]
    [Google Scholar]
  25. Ito T., Tashiro K., Muta S., Ozawa R., Chiba T., Nishizawa M., Yamamoto K., Kuhara S., Sakaki Y. 2000; Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci USA 97:1143–1147 [CrossRef]
    [Google Scholar]
  26. James P., Halladay J., Craig E. A. 1996; Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436
    [Google Scholar]
  27. Jelinsky S. A., Samson L. D. 1999; Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci USA 96:1486–1491 [CrossRef]
    [Google Scholar]
  28. Johnston S. A., Carlson M. 1992; Regulation of carbon and phosphate utilization. In The Molecular and Cellular Biology of the Yeast Saccharomyces, Gene Expression pp 193–281 Edited by Jones E. W., Pringle J. R., Broach J. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Karin M., Najarian R., Haslinger A., Valenzuela P., Welch J., Fogel S. 1984; Primary structure and transcription of an amplified genetic locus: the CUP1 locus of yeast. Proc Natl Acad Sci USA 81:337–341 [CrossRef]
    [Google Scholar]
  30. Klein P., Kanehisa M., DeLisi C. 1985; The detection and classification of membrane-spanning proteins. Biochim Biophys Acta 815:468–476 [CrossRef]
    [Google Scholar]
  31. Malpertuy A., Tekaia F., Casaregola S. 21 other authors 2000; Genomic exploration of the hemiascomycetous yeasts; 19; Ascomycetes-specific genes. FEBS Lett 487:113–121 [CrossRef]
    [Google Scholar]
  32. Mizushima N., Noda T., Yoshimori T., Tanaka Y., Ishii T., George M. D., Klionsky D. J., Ohsumi M., Ohsumi Y. 1998; A protein conjugation system essential for autophagy. Nature 395:395–398 [CrossRef]
    [Google Scholar]
  33. Muhlrad D., Hunter R., Parker R. 1992; A rapid method for localized mutagenesis of yeast genes. Yeast 8:79–82 [CrossRef]
    [Google Scholar]
  34. Nelissen B., Mordant P., Jonniaux J. L., De Wachter R., Goffeau A. 1995; Phylogenetic classification of the major superfamily of membrane transport facilitators, as deduced from yeast genome sequencing. FEBS Lett 377:232–236 [CrossRef]
    [Google Scholar]
  35. Oliver S. G., Winson M. K., Kell D. B., Baganz F. 1998; Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378 [CrossRef]
    [Google Scholar]
  36. Ozcan S., Dover J., Rosenwald A. G., Wolfl S., Johnston M. 1996; Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci USA 93:12428–12432 [CrossRef]
    [Google Scholar]
  37. Petitjean A., Hilger F., Tatchell K. 1990; Comparison of thermosensitive alleles of the CDC25 gene involved in the cAMP metabolism of Saccharomyces cerevisiae . Genetics 124:797–806
    [Google Scholar]
  38. Rachidi N., Martinez M. J., Barre P., Blondin B. 2000; Saccharomyces cerevisiae PAU genes are induced by anaerobiosis. Mol Microbiol 35:1421–1430
    [Google Scholar]
  39. Russnak R., Pereira S., Platt T. 1996; RNA binding analysis of yeast REF2 and its two-hybrid interaction with a new gene product, FIR1 . Gene Expr 6:241–258
    [Google Scholar]
  40. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. 1985; Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354 [CrossRef]
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Sander C., Schneider R. 1991; Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9:56–68 [CrossRef]
    [Google Scholar]
  43. Schneller J. M., Schneider C., Stahl A. J. 1978; Distinct nuclear genes for yeast mitochondrial and cytoplasmic methionyl-tRNA synthetases. Biochem Biophys Res Commun 85:1392–1399 [CrossRef]
    [Google Scholar]
  44. Sherman F., Fink G. R., Hicks J. B. 1986 Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Souciet J., Aigle M., Artiguenave F. 21 other authors 2000; Genomic exploration of the hemiascomycetous yeasts. 1. A set of yeast species for molecular evolution studies. FEBS Lett 487:3–12 [CrossRef]
    [Google Scholar]
  46. Takahashi Y., Mizoi J., Toh E. A., Kikuchi Y. 2000; Yeast Ulp1, an Smt3-specific protease, associates with nucleoporins. J Biochem 128:723–725 [CrossRef]
    [Google Scholar]
  47. Uetz P., Giot L., Cagney G. 17 other authors 2000; A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae . Nature 403:623–627 [CrossRef]
    [Google Scholar]
  48. Wach A., Brachat A., Pohlmann R., Philippsen P. 1994; New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae . Yeast 10:1793–1808 [CrossRef]
    [Google Scholar]
  49. Wagner R., Straub M. L., Souciet J. L., Potier S., de Montigny J. 2001; New plasmid system to select for Saccharomyces cerevisiae purine-cytosine permease affinity mutants. J Bacteriol 183:4386–4388 [CrossRef]
    [Google Scholar]
  50. Wendland B., Emr S. D. 1998; Pan1p, yeast Eps15, functions as a multivalent adaptor that coordinates protein-protein interactions essential for endocytosis. J Cell Biol 141:71–84 [CrossRef]
    [Google Scholar]
  51. Wieczorke R., Krampe S., Weierstall T., Freidel K., Hollenberg C. P., Boles E. 1999; Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae . FEBS Lett 464:123–128 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-2111
Loading
/content/journal/micro/10.1099/00221287-148-7-2111
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error