1887

Abstract

Several strains belonging to the / group isolated from plant-pathogen-infested soil possess plant-growth-promoting activity [Krebs, B. (1998) 105, 181–197]. Three out of the four strains investigated were identified as and were able to degrade extracellular phytate (-inositol hexakisphosphate). The highest extracellular phytase activity was detected in strain FZB45, and diluted culture filtrates of this strain stimulated growth of maize seedlings under phosphate limitation in the presence of phytate. The amino acid sequence deduced from the phytase gene cloned from FZB45 displayed a high degree of similarity to known phytases. Weak similarity between FZB45 phytase and alkaline phosphatase IV pointed to a possible common origin of these two enzymes. The recombinant protein expressed by MU331 displayed 3(1)-phytase activity yielding D/L-Ins(1,2,4,5,6)P5 as the first product of phytate hydrolysis. A phytase-negative mutant strain, FZB45/M2, whose gene is disrupted, was generated by replacing the entire wild-type gene on the chromosome of FZB45 with a :: fragment, and culture filtrates obtained from FZB45/M2 did not stimulate plant growth. In addition, the growth of maize seedlings was promoted in the presence of purified phytase and the absence of culture filtrate. These genetic and biochemical experiments provide strong evidence that phytase activity of FZB45 is important for plant growth stimulation under phosphate limitation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-2097
2002-07-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1482097a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-2097&mimeType=html&fmt=ahah

References

  1. Bezzate S., Aymerich St., Chambert R., Czarnes S., Berge O., Heulin T. 2000; Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol 2:333–342 [CrossRef]
    [Google Scholar]
  2. Birren B., Lai E. 1993 Pulse Field Gel Electrophoresis. A Practical Guide pp 59–64 San Diego: Academic Press;
    [Google Scholar]
  3. Bloemberg G. V., Lugtenberg B. J. J. 2001; Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350 [CrossRef]
    [Google Scholar]
  4. Broadbent P., Baker K. F., Waterworth Y. 1977; Effect of Bacillus spp. on increased growth of seedlings in steamed and non-treated soil. Phytopathology 67:1027–1034
    [Google Scholar]
  5. Cutting S. M., Vander Horn P. B. 1990; Genetic analysis. In Molecular Biological Methods for Bacillus pp 65 Edited by Harwood C. R., Cutting S. M. Chichester: Wiley;
    [Google Scholar]
  6. Dekkers L. C., Phoelich C. C, van der Fits L., Lugtenberg B. J. J. 1998; A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci USA 95:7051–7056 [CrossRef]
    [Google Scholar]
  7. Emmert E. A. B., Handelsman J. 1999; Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett 171:1–9 [CrossRef]
    [Google Scholar]
  8. Ferrari E., Jarnagin A. S., Schmidt B. F. 1993; Commercial production of extracellular enzymes. In Bacillus subtilis and Other Gram-positive Bacteria pp 917–937 Edited by Sonenshein A. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Findenegg G. R., Nelemans J. A. 1993; The effect of phytase on the availability of phosphorus from myo -inositol hexaphosphate (phytate) for maize roots. Plant Soil 154:189–196 [CrossRef]
    [Google Scholar]
  10. Gibson R. M., Errington J. 1992; A novel Bacillus subtilis expression vector based on bacteriophage ϕ105. Gene 121:137–142 [CrossRef]
    [Google Scholar]
  11. Goto K., Omura T., Hara Y., Sadaie Y. 2000; Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus . J Gen Appl Microbiol 46:1–8 [CrossRef]
    [Google Scholar]
  12. Greiner R., Larsson Alminger M. 2001; Stereospecificity of myo -inositol hexakisphosphate dephosphorylation by phytate-degrading enzymes of cereals. J Food Biochem 25:229–248 [CrossRef]
    [Google Scholar]
  13. Greiner R., Haller E., Konietzny U., Jany K.-D. 1997; Purification and characterization of a phytase from Klebsiella terrigena . Arch Biochem Biophys 341:201–206 [CrossRef]
    [Google Scholar]
  14. Greiner R., Carlsson N.-G., Larsson Alminger M. 2000; Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of Escherichia coli . J Biotechnol 84:53–62 [CrossRef]
    [Google Scholar]
  15. Ha N.-Ch., Oh B.-Ch., Shin H.-J., Oh T.-K., Kim Y.-O., Choi K. Y., Oh B.-H. 2000; Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Nat Struct Biol 7:147–153 [CrossRef]
    [Google Scholar]
  16. Hayes J. E., Simpson R. J., Richardson A. E. 2000; The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose-1-phosphate or inorganic phosphate. Plant Soil 220:165–174 [CrossRef]
    [Google Scholar]
  17. Hulett F. M., Kim E. E., Bookstein C., Kapp N. V., Edwards C. W., Wyckoff H. W. 1991; Bacillus subtilis alkaline phosphatases III and IV. J Biol Chem 266:1077–1084
    [Google Scholar]
  18. Igbasan F. A., Männer K., Miksch G., Borriss R., Farouk A., Simon O. 2000; Comparative studies of the in vitro properties of phytases from various microbial origin. Arch Anim Nutr 53:353–373
    [Google Scholar]
  19. Jiang G., Krishnan A. H., Kim Y.-W., Wacek T. J., Krishnan H. B. 2001; A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean ( Glycine max [L.] Merr.). J Bacteriol 183:2595–2604 [CrossRef]
    [Google Scholar]
  20. Ju J. L., Luo T., Haldenwang W. G. 1998; Forespore expression and processing of the SigE transcription factor in wild-type and mutant Bacillus subtilis . J Bacteriol 180:1673–1681
    [Google Scholar]
  21. Kenny E., Atkinson T., Hartley B. S. 1985; Nucleotide sequence of the thymidylate synthase gene ( thyP3 ) from the B. subtilis phage ϕ3T. Gene 34:335–342 [CrossRef]
    [Google Scholar]
  22. Kerovuo J., Lauraeus M., Nurminen P., Kalkkinen N., Apajalahti J. 1998; Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis . Appl Environ Microbiol 64:2079–2085
    [Google Scholar]
  23. Kerovuo J., Ruovinen J., Hatzack F. 2000; Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: indication of a novel reaction mechanism. Biochem J 352:623–628 [CrossRef]
    [Google Scholar]
  24. Kim Y.-O., Lee J.-K., Kim H.-K., Yu J.-H., Oh T.-K. 1998; Cloning of the thermostable phytase (Phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli . FEMS Microbiol Lett 162:185–191 [CrossRef]
    [Google Scholar]
  25. Kloepper J. W., Lifshitz R., Zablotowicz M. 1989; Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44 [CrossRef]
    [Google Scholar]
  26. Krebs B., Höding B., Kübart S. M., Workie A., Junge H., Schmiedeknecht G., Grosch R., Bochow H., Hevesi M. 1998; Use of Bacillus subtilis as biocontrol agent. 1. Activities and characterization of Bacillus subtilis strains. J Plant Dis Prot 105:181–197
    [Google Scholar]
  27. Kunst F., Rapoport G. 1995; Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis . J Bacteriol 177:2403–2407
    [Google Scholar]
  28. Leung Y.-Ch., Errington J. 1995; Characterization of an insertion in the phage ϕ105 genome that blocks host Bacillus subtilis lysis and provides strong expression of heterologous genes. Gene 154:1–6 [CrossRef]
    [Google Scholar]
  29. Li J., Ovakim D. H., Charles T. C., Glick B. R. 2000; An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105 [CrossRef]
    [Google Scholar]
  30. Maugenest S., Martinez I., Godin B., Perez P., Lescure A.-M. 1999; Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Mol Biol 39:503–514 [CrossRef]
    [Google Scholar]
  31. McInroy J. A., Kloepper J. W. 1995; Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342 [CrossRef]
    [Google Scholar]
  32. Nakamura L. K., Roberts M. S., Cohan F. M. 1999; Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp.subtilis subsp. nov. and Bacillussubtilis subsp. spizenii subsp. nov. Int J Syst Bacteriol 49:1211–1215 [CrossRef]
    [Google Scholar]
  33. Nautiyal C. S., Bhadauria S., Kumar P., Lal H., Mondal R., Verma D. 2000; Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296 [CrossRef]
    [Google Scholar]
  34. Parry J. M., Turnbull P. C. B., Gibson J. R. 1983 A Colour Atlas of Bacillus Species. London: Wolfe Medical Publications;
    [Google Scholar]
  35. Priest F. G., Goodfellow M., Shute L. A., Berkeley R. C. W. 1987; Bacillus amyloliquefaciens sp. nov., nom. rev. Int J Syst Bacteriol 37:69–71 [CrossRef]
    [Google Scholar]
  36. Reddy N. R., Pierson M. D., Sathe S. K., Salunkhe D. K. 1989 Phytases in Cereals and Legumes Boca Raton, FL: CRC Press;
    [Google Scholar]
  37. Richardson A. E., Hadobas P. A. 1997; Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516 [CrossRef]
    [Google Scholar]
  38. Richardson A. E., Hadobas P. A., Hayes J. E. 2000; Acid phosphomonoesterase and phytase activities of wheat ( Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ 23:397–405 [CrossRef]
    [Google Scholar]
  39. Richardson A. E., Hadobas P. A., Hayes J. E. 2001a; Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649
    [Google Scholar]
  40. Richardson A. E., Hadobas P. A., Hayes J. E., O’Hara J. E., Simpson R. J. 2001b; Utilization of phosphorus by pasture plants supplied with myo -inositol hexaphosphate is enhanced by the presence of soil microorganisms. Plant Soil 229:47–56 [CrossRef]
    [Google Scholar]
  41. Rozycki H., Dahm H., Strzelczyk E., Li C. Y. 1999; Diazotrophic bacteria in root-free soil and in the root zone of pine ( Pinus sylvestris L.) and oak ( Quercus robur L.). Appl Soil Ecol 5:29–56
    [Google Scholar]
  42. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain termination inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  43. Smith K. P., Handelsman J., Goodman R. M. 1999; Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci USA 96:4786–4790 [CrossRef]
    [Google Scholar]
  44. Steenhoudt O., Vanderleyden J. 2000; Azospirillum , a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506 [CrossRef]
    [Google Scholar]
  45. Steller S., Vollenbroich D., Leenders F., Stein T., Conrad B., Hofemeister J., Jacques P., Thonart P., Vater J. 1999; Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41 [CrossRef]
    [Google Scholar]
  46. Tam N. H., Borriss R. 1998; Genes encoding thymidylate synthases A and B in the genus Bacillus are members of two distinct families. Mol Gen Genet 258:427–430
    [Google Scholar]
  47. Thornewell S. J., East A. K., Errington J. 1993; An efficient expression and secretion system based on Bacillus subtilis phage ϕ105 and its use for the production of B. cereus β-lactamase I. Gene 133:47–53 [CrossRef]
    [Google Scholar]
  48. Timmusk S., Wagner G. H. 2001; The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress response. Mol Plant–Microbe Interact 12:951–959
    [Google Scholar]
  49. Wodzinski R. J., Ullah A. H. J. 1996; Phytase. Adv Appl Microbiol 42:263–302
    [Google Scholar]
  50. Yoon S. J., Choi Y. J., Min H. K., Cho K. K., Kim J. W., Lee S. C., Jung Y. H. 1996; Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzyme Microb Technol 18:449–454 [CrossRef]
    [Google Scholar]
  51. Yoshida K.-I., Aoyama D., Ishio I., Shibuyama T., Fujita Y. 1997; Organization and transcription of the myo -inositol operon, iol , of Bacillus subtilis . J Bacteriol 179:4591–4598
    [Google Scholar]
  52. Yoshida K.-I., Yamamoto Y., Omae K., Yamamoto M., Fujita Y. 2002; Identification of two myo -inositol transporter genes of Bacillus subtilis . J Bacteriol 184:983–991 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-2097
Loading
/content/journal/micro/10.1099/00221287-148-7-2097
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error