1887

Abstract

Several strains belonging to the / group isolated from plant-pathogen-infested soil possess plant-growth-promoting activity [Krebs, B. (1998) 105, 181–197]. Three out of the four strains investigated were identified as and were able to degrade extracellular phytate (-inositol hexakisphosphate). The highest extracellular phytase activity was detected in strain FZB45, and diluted culture filtrates of this strain stimulated growth of maize seedlings under phosphate limitation in the presence of phytate. The amino acid sequence deduced from the phytase gene cloned from FZB45 displayed a high degree of similarity to known phytases. Weak similarity between FZB45 phytase and alkaline phosphatase IV pointed to a possible common origin of these two enzymes. The recombinant protein expressed by MU331 displayed 3(1)-phytase activity yielding D/L-Ins(1,2,4,5,6)P5 as the first product of phytate hydrolysis. A phytase-negative mutant strain, FZB45/M2, whose gene is disrupted, was generated by replacing the entire wild-type gene on the chromosome of FZB45 with a :: fragment, and culture filtrates obtained from FZB45/M2 did not stimulate plant growth. In addition, the growth of maize seedlings was promoted in the presence of purified phytase and the absence of culture filtrate. These genetic and biochemical experiments provide strong evidence that phytase activity of FZB45 is important for plant growth stimulation under phosphate limitation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-2097
2002-07-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1482097a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-2097&mimeType=html&fmt=ahah

References

  1. Bezzate S., Aymerich St., Chambert R., Czarnes S., Berge O., Heulin T. 2000; Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol2:333–342[CrossRef]
    [Google Scholar]
  2. Birren B., Lai E. 1993; Pulse Field Gel Electrophoresis. A Practical Guide pp59–64 San Diego: Academic Press;
    [Google Scholar]
  3. Bloemberg G. V., Lugtenberg B. J. J. 2001; Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol4:343–350[CrossRef]
    [Google Scholar]
  4. Broadbent P., Baker K. F., Waterworth Y. 1977; Effect of Bacillus spp. on increased growth of seedlings in steamed and non-treated soil. Phytopathology67:1027–1034
    [Google Scholar]
  5. Cutting S. M., Vander Horn P. B. 1990; Genetic analysis. In Molecular Biological Methods for Bacillus pp65 Edited by Harwood C. R., Cutting S. M.. Chichester: Wiley;
    [Google Scholar]
  6. Dekkers L. C., Phoelich C. C, van der Fits L., Lugtenberg B. J. J. 1998; A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci USA95:7051–7056[CrossRef]
    [Google Scholar]
  7. Emmert E. A. B., Handelsman J. 1999; Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett171:1–9[CrossRef]
    [Google Scholar]
  8. Ferrari E., Jarnagin A. S., Schmidt B. F. 1993; Commercial production of extracellular enzymes. In Bacillus subtilis and Other Gram-positive Bacteria pp917–937 Edited by Sonenshein A. L.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Findenegg G. R., Nelemans J. A. 1993; The effect of phytase on the availability of phosphorus from myo -inositol hexaphosphate (phytate) for maize roots. Plant Soil154:189–196[CrossRef]
    [Google Scholar]
  10. Gibson R. M., Errington J. 1992; A novel Bacillus subtilis expression vector based on bacteriophage ϕ105. Gene121:137–142[CrossRef]
    [Google Scholar]
  11. Goto K., Omura T., Hara Y., Sadaie Y. 2000; Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J Gen Appl Microbiol46:1–8[CrossRef]
    [Google Scholar]
  12. Greiner R., Larsson Alminger M. 2001; Stereospecificity of myo -inositol hexakisphosphate dephosphorylation by phytate-degrading enzymes of cereals. J Food Biochem25:229–248[CrossRef]
    [Google Scholar]
  13. Greiner R., Haller E., Konietzny U., Jany K.-D. 1997; Purification and characterization of a phytase from Klebsiella terrigena . Arch Biochem Biophys341:201–206[CrossRef]
    [Google Scholar]
  14. Greiner R., Carlsson N.-G., Larsson Alminger M. 2000; Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of Escherichia coli . J Biotechnol84:53–62[CrossRef]
    [Google Scholar]
  15. Ha N.-Ch., Oh B.-Ch., Shin H.-J., Oh T.-K., Kim Y.-O., Choi K. Y., Oh B.-H. 2000; Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Nat Struct Biol7:147–153[CrossRef]
    [Google Scholar]
  16. Hayes J. E., Simpson R. J., Richardson A. E. 2000; The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose-1-phosphate or inorganic phosphate. Plant Soil220:165–174[CrossRef]
    [Google Scholar]
  17. Hulett F. M., Kim E. E., Bookstein C., Kapp N. V., Edwards C. W., Wyckoff H. W. 1991; Bacillus subtilis alkaline phosphatases III and IV. J Biol Chem266:1077–1084
    [Google Scholar]
  18. Igbasan F. A., Männer K., Miksch G., Borriss R., Farouk A., Simon O. 2000; Comparative studies of the in vitro properties of phytases from various microbial origin. Arch Anim Nutr53:353–373
    [Google Scholar]
  19. Jiang G., Krishnan A. H., Kim Y.-W., Wacek T. J., Krishnan H. B. 2001; A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean ( Glycine max [L.] Merr.). J Bacteriol183:2595–2604[CrossRef]
    [Google Scholar]
  20. Ju J. L., Luo T., Haldenwang W. G. 1998; Forespore expression and processing of the SigE transcription factor in wild-type and mutant Bacillus subtilis . J Bacteriol180:1673–1681
    [Google Scholar]
  21. Kenny E., Atkinson T., Hartley B. S. 1985; Nucleotide sequence of the thymidylate synthase gene ( thyP3 ) from the B. subtilis phage ϕ3T. Gene34:335–342[CrossRef]
    [Google Scholar]
  22. Kerovuo J., Lauraeus M., Nurminen P., Kalkkinen N., Apajalahti J. 1998; Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis . Appl Environ Microbiol64:2079–2085
    [Google Scholar]
  23. Kerovuo J., Ruovinen J., Hatzack F. 2000; Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: indication of a novel reaction mechanism. Biochem J352:623–628[CrossRef]
    [Google Scholar]
  24. Kim Y.-O., Lee J.-K., Kim H.-K., Yu J.-H., Oh T.-K. 1998; Cloning of the thermostable phytase (Phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli . FEMS Microbiol Lett162:185–191[CrossRef]
    [Google Scholar]
  25. Kloepper J. W., Lifshitz R., Zablotowicz M. 1989; Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol7:39–44[CrossRef]
    [Google Scholar]
  26. Krebs B., Höding B., Kübart S. M., Workie A., Junge H., Schmiedeknecht G., Grosch R., Bochow H., Hevesi M. 1998; Use of Bacillus subtilis as biocontrol agent. 1. Activities and characterization of Bacillus subtilis strains. J Plant Dis Prot105:181–197
    [Google Scholar]
  27. Kunst F., Rapoport G. 1995; Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis . J Bacteriol177:2403–2407
    [Google Scholar]
  28. Leung Y.-Ch., Errington J. 1995; Characterization of an insertion in the phage ϕ105 genome that blocks host Bacillus subtilis lysis and provides strong expression of heterologous genes. Gene154:1–6[CrossRef]
    [Google Scholar]
  29. Li J., Ovakim D. H., Charles T. C., Glick B. R. 2000; An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol41:101–105[CrossRef]
    [Google Scholar]
  30. Maugenest S., Martinez I., Godin B., Perez P., Lescure A.-M. 1999; Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Mol Biol39:503–514[CrossRef]
    [Google Scholar]
  31. McInroy J. A., Kloepper J. W. 1995; Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil173:337–342[CrossRef]
    [Google Scholar]
  32. Nakamura L. K., Roberts M. S., Cohan F. M. 1999; Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp.subtilis subsp. nov. and Bacillussubtilis subsp. spizenii subsp. nov. Int J Syst Bacteriol49:1211–1215[CrossRef]
    [Google Scholar]
  33. Nautiyal C. S., Bhadauria S., Kumar P., Lal H., Mondal R., Verma D. 2000; Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett182:291–296[CrossRef]
    [Google Scholar]
  34. Parry J. M., Turnbull P. C. B., Gibson J. R. 1983; A Colour Atlas of Bacillus Species. London: Wolfe Medical Publications;
    [Google Scholar]
  35. Priest F. G., Goodfellow M., Shute L. A., Berkeley R. C. W. 1987; Bacillus amyloliquefaciens sp. nov., nom. rev. Int J Syst Bacteriol37:69–71[CrossRef]
    [Google Scholar]
  36. Reddy N. R., Pierson M. D., Sathe S. K., Salunkhe D. K. 1989; Phytases in Cereals and Legumes Boca Raton, FL: CRC Press;
    [Google Scholar]
  37. Richardson A. E., Hadobas P. A. 1997; Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol43:509–516[CrossRef]
    [Google Scholar]
  38. Richardson A. E., Hadobas P. A., Hayes J. E. 2000; Acid phosphomonoesterase and phytase activities of wheat ( Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ23:397–405[CrossRef]
    [Google Scholar]
  39. Richardson A. E., Hadobas P. A., Hayes J. E. 2001a; Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J25:641–649
    [Google Scholar]
  40. Richardson A. E., Hadobas P. A., Hayes J. E., O’Hara J. E., Simpson R. J. 2001b; Utilization of phosphorus by pasture plants supplied with myo -inositol hexaphosphate is enhanced by the presence of soil microorganisms. Plant Soil229:47–56[CrossRef]
    [Google Scholar]
  41. Rozycki H., Dahm H., Strzelczyk E., Li C. Y. 1999; Diazotrophic bacteria in root-free soil and in the root zone of pine ( Pinus sylvestris L.) and oak ( Quercus robur L.). Appl Soil Ecol5:29–56
    [Google Scholar]
  42. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain termination inhibitors. Proc Natl Acad Sci USA74:5463–5467[CrossRef]
    [Google Scholar]
  43. Smith K. P., Handelsman J., Goodman R. M. 1999; Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci USA96:4786–4790[CrossRef]
    [Google Scholar]
  44. Steenhoudt O., Vanderleyden J. 2000; Azospirillum , a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev24:487–506[CrossRef]
    [Google Scholar]
  45. Steller S., Vollenbroich D., Leenders F., Stein T., Conrad B., Hofemeister J., Jacques P., Thonart P., Vater J. 1999; Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol6:31–41[CrossRef]
    [Google Scholar]
  46. Tam N. H., Borriss R. 1998; Genes encoding thymidylate synthases A and B in the genus Bacillus are members of two distinct families. Mol Gen Genet258:427–430
    [Google Scholar]
  47. Thornewell S. J., East A. K., Errington J. 1993; An efficient expression and secretion system based on Bacillus subtilis phage ϕ105 and its use for the production of B. cereus β-lactamase I. Gene133:47–53[CrossRef]
    [Google Scholar]
  48. Timmusk S., Wagner G. H. 2001; The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress response. Mol Plant–Microbe Interact12:951–959
    [Google Scholar]
  49. Wodzinski R. J., Ullah A. H. J. 1996; Phytase. Adv Appl Microbiol42:263–302
    [Google Scholar]
  50. Yoon S. J., Choi Y. J., Min H. K., Cho K. K., Kim J. W., Lee S. C., Jung Y. H. 1996; Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzyme Microb Technol18:449–454[CrossRef]
    [Google Scholar]
  51. Yoshida K.-I., Aoyama D., Ishio I., Shibuyama T., Fujita Y. 1997; Organization and transcription of the myo -inositol operon, iol , of Bacillus subtilis . J Bacteriol179:4591–4598
    [Google Scholar]
  52. Yoshida K.-I., Yamamoto Y., Omae K., Yamamoto M., Fujita Y. 2002; Identification of two myo -inositol transporter genes of Bacillus subtilis . J Bacteriol184:983–991[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-2097
Loading
/content/journal/micro/10.1099/00221287-148-7-2097
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error