1887

Abstract

N-terminal lipidation is a major mechanism by which bacteria can tether proteins to membranes and one which is of particular importance to Gram-positive bacteria due to the absence of a retentive outer membrane. Lipidation is directed by the presence of a cysteine-containing ‘lipobox’ within the lipoprotein signal peptide sequence and this feature has greatly facilitated the identification of putative lipoproteins by gene sequence analysis. The properties of lipoprotein signal peptides have been described previously by the Prosite pattern PS00013. Here, a dataset of 33 experimentally verified Gram-positive bacterial lipoproteins (excluding those from ) has been identified by an extensive literature review. The signal peptide features of these lipoproteins have been analysed to create a refined pattern, G+LPP, which is more specific for the identification of Gram-positive bacterial lipoproteins. The ability of this pattern to identify probable lipoprotein sequences is demonstrated by a search of the genome of , in comparison with sequences identified using PS00013. Greater discrimination against likely false-positives was evident from the use of G+LPP compared with PS00013. These data confirm the likely abundance of lipoproteins in Gram-positive bacterial genomes, with at least 25 probable lipoproteins identified in

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-2065
2002-07-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1482065a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-2065&mimeType=html&fmt=ahah

References

  1. Adamou J. E., Heinrichs J. H., Erwin A. L. 10 other authors 2001; Identification and characterization of a novel family of pneumococcal proteins that are protective against sepsis. Infect Immun 69:949–958 [CrossRef]
    [Google Scholar]
  2. Albert I., Rutherford A. W., Grav H., Kellermann J., Michel H. 1998; The 18 kDa cytochrome c553 from Heliobacterium gestii : gene sequence and characterization of the mature protein. Biochemistry 37:9001–9008 [CrossRef]
    [Google Scholar]
  3. Alloing G., De Philip P., Claverys J.-P. 1994; Three highly homologous membrane-bound lipoproteins participate in oligopeptide transport by the Ami system of the Gram-positive Streptococcus pneumoniae . J Mol Biol 241:44–58 [CrossRef]
    [Google Scholar]
  4. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J. H., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  5. Andersen A. B., Hansen E. B. 1989; Structure and mapping of antigenic domains of protein antigen b, a 38,000-molecular weight protein of Mycobacterium tuberculosis . Infect Immun 57:2481–2489
    [Google Scholar]
  6. Antelmann H., Tjalsma H., Voigt B., Ohlmeier S., Bron S., van Dijl J. M., Hecker M. 2001; A proteomic view of genome-based signal peptide predictions. Genome Res 11:1484–1502 [CrossRef]
    [Google Scholar]
  7. Ashbridge K. R., Booth R. J., Watson J. D., Lathigra R. 1989; Nucleotide sequence of the 19 kDa antigen gene from Mycobacterium tuberculosis . Nucleic Acids Res 17:1249 [CrossRef]
    [Google Scholar]
  8. Bengtsson J., Tjalsma H., Rivolta C., Hederstedt L. 1999; Subunit II of Bacillus subtilis cytochrome c oxidase is a lipoprotein. J Bacteriol 181:685–688
    [Google Scholar]
  9. Braun V., Wu H. C. 1994; Lipoproteins, structure, function, biosynthesis and model for protein export. New Compr Biochem 27:319–341
    [Google Scholar]
  10. Campbell D. J., Shastri N. 1998; Bacterial surface proteins recognized by CD4+ T cells during murine infection with Listeria monocytogenes . J Immunol 161:2339–2347
    [Google Scholar]
  11. Chambaud I., Wróblewski H., Blanchard A. 1999; Interactions between mycoplasma lipoproteins and the host immune system. Trends Microbiol 7:493–499 [CrossRef]
    [Google Scholar]
  12. Chanter N., Ward C. L., Talbot N. C., Flanagan J. A., Binns M., Houghton S. B., Smith K. C., Mumford J. A. 1999; Recombinant hyaluronate associated protein as a protective immunogen against Streptococcus equi and Streptococcus zooepidemicus challenge in mice. Microb Pathog 27:133–143 [CrossRef]
    [Google Scholar]
  13. Claros M. G., von Heijne G. 1994; TopPred II: an improved software for membrane protein structure predictions. CABIOS 10:685–686
    [Google Scholar]
  14. Claverys J.-P. 2001; A new family of high-affinity ABC manganese and zinc permeases. Res Microbiol 152:231–243 [CrossRef]
    [Google Scholar]
  15. Cleavinger C. M., Kim M. F., Wise K. S. 1994; Processing and surface presentation of the Mycoplasma hyorhinis variant lipoprotein VlpC. J Bacteriol 176:2463–2467
    [Google Scholar]
  16. Cleavinger C. M., Kim M. F., Im J. H., Wise K. S. 1995; Identification of Mycoplasma membrane proteins by systematic Tn phoA mutagenesis of a recombinant library. Mol Microbiol 18:283–293 [CrossRef]
    [Google Scholar]
  17. Cockayne A., Hill P. J., Powell N. B. L., Bishop K., Sims C., Williams P. 1998; Molecular cloning of a 32-kilodalton lipoprotein component of a novel iron-regulated Staphylococcus epidermidis ABC transporter. Infect Immun 66:3767–3774
    [Google Scholar]
  18. Cossart P., Jonquieres R. 2000; Sortase, a universal target for therapeutic agents against Gram-positive bacteria?. Proc Natl Acad Sci USA 97:5013–5015 [CrossRef]
    [Google Scholar]
  19. Cserzo M., Wallin E., Simon I., von Heijne G., Elofsson A. 1997; Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the Dense Alignment Surface method. Protein Eng 10:673–676 [CrossRef]
    [Google Scholar]
  20. Dartois V., Djavakhishvili T., Hoch J. A. 1997; KapB is a lipoprotein required for KinB signal transduction and activation of the phosphorelay to sporulation in Bacillus subtilis . Mol Microbiol 26:1097–1108 [CrossRef]
    [Google Scholar]
  21. Demchick P., Koch A. L. 1996; The permeability of the wall fabric of Escherichia coli and Bacillus subtilis . J Bacteriol 178:768–773
    [Google Scholar]
  22. Dijkstra A. J., Keck W. 1996; Peptidoglycan as a barrier to transenvelope transport. J Bacteriol 178:5555–5562
    [Google Scholar]
  23. D’Orazio M., Folcarelli S., Mariani F., Colizzi V., Rotilio G., Battistoni A. 2001; Lipid modification of the Cu,Zn superoxide dismutase from Mycobacterium tuberculosis . Biochem J 359:17–22 [CrossRef]
    [Google Scholar]
  24. Edman M., Jarhede T., Sjostrom M., Wieslander A. 1999; Different sequence patterns in signal peptides from mycoplasmas, other gram-positive bacteria, and Escherichia coli : a multivariate data analysis. Proteins 35:195–205 [CrossRef]
    [Google Scholar]
  25. Erbeznik M., Ray M., Dawson K. A., Strobel H. J. 1998a; Xylose transport by the anaerobic thermophile Thermoanaerobacter ethanolicus and the characterization of a d-xylose-binding protein. Curr Microbiol 37:295–300 [CrossRef]
    [Google Scholar]
  26. Erbeznik M., Strobel H. J., Dawson K. A., Jones C. R. 1998b; The d-xylose binding protein, XylF, from Thermoanaerobacter ethanolicus 39E: cloning, molecular analysis, and expression of the structural gene. J Bacteriol 180:3570–3577
    [Google Scholar]
  27. Errington J., Appleby L., Daniel R. A., Goodfellow H., Partridge S. R., Yudkin M. D. 1992; Structure and function of the spoIIIJ gene of Bacillus subtilis : a vegetatively expressed gene that is essential for σG activity at an intermediate stage of sporulation. J Gen Microbiol 138:2609–2618 [CrossRef]
    [Google Scholar]
  28. Falquet L., Pagni M., Bucher P., Hulo N., Sigrist C. J. A., Hofmann K., Bairoch A. 2002; The PROSITE database: its status in 2002. Nucleic Acids Res 30:235–238 [CrossRef]
    [Google Scholar]
  29. Ferretti J. J., McShan W. M., Ajdic D. 20 other authors 2001; Complete genome sequence of an M1 strain of Streptococcus pyogenes . Proc Natl Acad Sci USA 98:4658–4663 [CrossRef]
    [Google Scholar]
  30. Frishman D., Albermann K., Hani J., Heumann K., Metanomski A., Zollner A., Mewes H. W. 2001; Functional and structural genomics using PEDANT. Bioinformatics 17:44–57 [CrossRef]
    [Google Scholar]
  31. Fujiwara Y., Oka M., Hamamoto T., Sone N. 1993; Cytochrome-c-551 of the thermophilic bacterium PS3, DNA-sequence and analysis of the mature cytochrome. Biochim Biophys Acta 1144213–219 [CrossRef]
    [Google Scholar]
  32. Gase K., Liu G. W., Bruckmann A., Steiner K., Ozegowski J., Malke H. 1997; The LppC gene of Streptococcus equisimilis encodes a lipoprotein that is homologous to the e(P4) outer membrane protein from Haemophilus influenzae . Med Microbiol Immunol 186:63–73 [CrossRef]
    [Google Scholar]
  33. Gibson C. M., Caparon M. G. 2002; Alkaline phosphatase reporter transposon for identification of genes encoding secreted proteins in Gram-positive microorganisms. Appl Environ Microbiol 68:928–932 [CrossRef]
    [Google Scholar]
  34. Haake D. A. 2000; Spirochaetal lipoproteins and pathogenesis. Microbiology 146:1491–1504
    [Google Scholar]
  35. Haandrikman A. J., Kok J., Venema G. 1991; Lactococcal proteinase maturation protein PrtM is a lipoprotein. J Bacteriol 173:4517–4525
    [Google Scholar]
  36. Hamilton A., Harrington D., Sutcliffe I. C. 2000; Characterisation of acid phosphatase activities in the equine pathogen Streptococcus equi . Syst Appl Microbiol 23:325–329 [CrossRef]
    [Google Scholar]
  37. Harrington D. J., Greated J. S., Chanter N., Sutcliffe I. C. 2000; Identification of lipoprotein homologues of pneumococcal PsaA in the equine pathogens Streptococcus equi and Streptococcus zooepidemicus . Infect Immun 68:6048–6051 [CrossRef]
    [Google Scholar]
  38. Herrmann A., Schlösser A., Schmid R., Schneider E. 1996; Biochemical identification of a lipoprotein with maltose-binding activity in the thermoacidophilic Gram-positive bacterium Alicyclobacillus acidocaldarius . Res Microbiol 147:733–737 [CrossRef]
    [Google Scholar]
  39. Hofmann K., Stoffel W. 1993; TMbase – a database of membrane spanning protein segments. Biol Chem Hoppe-Seyler 374:166
    [Google Scholar]
  40. Hülsmann A., Lurz R., Scheffel F., Schneider E. 2000; Maltose and maltodextrin transport in the thermoacidophilic Gram-positive bacterium Alicyclobacillus acidocaldarius is mediated by a high-affinity transport system that includes a maltose binding protein tolerant to low pH. J Bacteriol 182:6292–6302 [CrossRef]
    [Google Scholar]
  41. Inukai M., Takeuchi M., Shimizu K., Arai M. 1978; Mechanism of action of globomycin. J Antibiotics 31:1203–1205 [CrossRef]
    [Google Scholar]
  42. Janulczyk R., Rasmussen M. 2001; Improved pattern for genome-based screening identifies novel cell wall-attached proteins in gram-positive bacteria. Infect Immun 69:4019–4026 [CrossRef]
    [Google Scholar]
  43. Janulczyk R., Pallon J., Bjorck L. 1999; Identification and characterization of a Streptococcus pyogenes ABC transporter with multiple specificity for metal cations. Mol Microbiol 34:596–606 [CrossRef]
    [Google Scholar]
  44. Jenkinson H. F., Baker R. A., Tannock G. W. 1996; A binding-lipoprotein-dependent oligopeptide transport system in Streptococcus gordonii essential for uptake of hexa- and heptapeptides. J Bacteriol 178:68–77
    [Google Scholar]
  45. Kempf B., Gade J., Bremer E. 1997; Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis : purification of the glycine betaine binding protein and characterization of a functional lipidless mutant. J Bacteriol 179:6213–6220
    [Google Scholar]
  46. Klein D., Somorja R. L., Lau P. C. K. 1988; Distinctive properties of signal sequences from bacterial lipoproteins. Protein Eng 2:15–20 [CrossRef]
    [Google Scholar]
  47. Kontinen V. P., Sarvas M. 1993; The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol Microbiol 8:727–737 [CrossRef]
    [Google Scholar]
  48. Leskelä S., Wahlstrom E., Kontinen V. P., Sarvas M. 1999; Lipid modification of prelipoproteins is dispensable for growth but essential for efficient protein secretion in Bacillus subtilis : characterization of the lgt gene. Mol Microbiol 31:1075–1085 [CrossRef]
    [Google Scholar]
  49. Lowther W. T., Brot N., Weissbach H., Honek J. F., Matthews B. W. 2000; Thiol-disulfide exchange is involved in the catalytic mechanism of peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA 97:6463–6468 [CrossRef]
    [Google Scholar]
  50. Luirink J., Samuelsson T., de Gier J.-W. 2001; YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly. FEBS Lett 501:1–5 [CrossRef]
    [Google Scholar]
  51. Malke H. 1998; Cytoplasmic membrane lipoprotein LppC of Streptococcus equisimilis functions as an acid phosphatase. Appl Environ Microbiol 64:2439–2442
    [Google Scholar]
  52. Nair J., Rouse D. A., Morris S. L. 1993; Nucleotide sequence analysis and serologic characterization of a 27-kilodalton Mycobacterium intracellulare lipoprotein. Infect Immun 61:1074–1081
    [Google Scholar]
  53. Navarre W. W., Schneewind O. 1999; Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229
    [Google Scholar]
  54. Neubauer H., Pantel I., Lindgren P. E., Götz F. 1999; Characterization of the molybdate transport system ModABC of Staphylococcus carnosus . Arch Microbiol 172:109–115 [CrossRef]
    [Google Scholar]
  55. Nielsen H., Krogh A. 1998; Prediction of signal peptides and signal anchors by a hidden Markov model. Int Syst Mol Biol 6:122–130
    [Google Scholar]
  56. Nielsen J. B. K., Lampen J. O. 1982; Membrane-bound penicillinases in gram-positive bacteria. J Biol Chem 257:4490–4495
    [Google Scholar]
  57. Nielsen J. B. K., Lampen J. O. 1983; Beta-lactamase-III of Bacillus cereus 569 – membrane lipoprotein and secreted protein. Biochemistry 22:4652–4656 [CrossRef]
    [Google Scholar]
  58. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  59. Nyström S., Wieslander A. 1992; Isoprenoid modification of proteins distinct from membrane acyl proteins in the prokaryote Acholeplasma laidlawii . Biochim Biophys Acta 1107:39–43 [CrossRef]
    [Google Scholar]
  60. Nyström S., Johansson K. E., Wieslander A. 1986; Selective acylation of membrane-proteins in Acholeplasma laidlawii . Eur J Biochem 156:85–94 [CrossRef]
    [Google Scholar]
  61. Overweg K., Kerr A., Sluijter M., Jackson M. H., Mitchell T. J., De Jong A. P. J. M., De Groot R., Hermans P. W. M. 2000a; The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses. Infect Immun 68:4180–4188 [CrossRef]
    [Google Scholar]
  62. Overweg K., Pericone C. D., Verhoef G. G. C., Weiser J. N., Meiring H. D., De Jong A. P. J. M., De Groot R., Hermans P. W. M. 2000b; Differential protein expression in phenotypic variants of Streptococcus pneumoniae . Infect Immun 68:4604–4610 [CrossRef]
    [Google Scholar]
  63. Pahl A., Keller U. 1994; Streptomyces chrysomallus FKBP-33 is a novel immunophilin consisting of 2 FK506 binding domains: its gene is transcriptionally coupled to the FKBP-12 gene. EMBO J 13:3472–3480
    [Google Scholar]
  64. Petit C. M., Brown J. R., Ingraham K., Bryant A. P., Holmes D. J. 2001; Lipid modification of prelipoproteins is dispensable for growth in vitro but essential for virulence in Streptococcus pneumoniae . FEMS Microbiol Lett 200:229–233 [CrossRef]
    [Google Scholar]
  65. Podbielski A., Leonard B. A. B. 1998; The group A streptococcal dipeptide permease (Dpp) is involved in the uptake of essential amino acids and affects the expression of cysteine protease. Mol Microbiol 28:1323–1334 [CrossRef]
    [Google Scholar]
  66. Podbielski A., Pohl B., Woischnik M., Korner C., Schmidt K. H., Rozdzinski E., Leonard B. A. B. 1996; Molecular characterization of group A streptococcal (GAS) oligopeptide permease (Opp) and its effect on cysteine protease production. Mol Microbiol 21:1087–1099 [CrossRef]
    [Google Scholar]
  67. Pyrowolakis G., Hofmann D., Herrmann R. 1998; The subunit b of the F0F1-type ATPase of the bacterium Mycoplasma pneumoniae is a lipoprotein. J Biol Chem 273:24792–24796 [CrossRef]
    [Google Scholar]
  68. Qi H. Y., Sankaran K., Gan K., Wu H. C. 1995; Structure-function relationship of bacterial prolipoprotein diacylglyceryl transferase: functionally significant conserved regions. J Bacteriol 177:6820–6824
    [Google Scholar]
  69. Razin S., Yogev D., Naot Y. 1998; Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62:1094–1156
    [Google Scholar]
  70. Rosati S., Pozzi S., Robino P., Montinaro B., Conti A., Fadda M., Pittau M. 1999; P48 major surface antigen of Mycoplasma agalactiae is homologous to a MALP product of Mycoplasma fermentans and belongs to a selected family of bacterial lipoproteins. Infect Immun 67:6213–6216
    [Google Scholar]
  71. Rudd K. E., Sofia H. J., Koonin E. V., Plunkett G., Lazar S., Rouviere P. E. 1995; A new family of peptidyl-prolyl isomerases. Trends Biochem Sci 20:12–14 [CrossRef]
    [Google Scholar]
  72. Sakamoto J., Shibata T., Mine T., Miyahara R., Torigoe T., Noguchi S., Matsushita K., Sone N. 2001; Cytochrome c oxidase contains an extra charged amino acid cluster in the new type of respiratory chain in the amino-acid-producing Gram-positive bacterium Corynebacterium glutamicum . Microbiology 147:2865–2871
    [Google Scholar]
  73. Sankaran K., Wu H. C. 1995; Bacterial prolipoprotein signal peptidase. Methods Enzymol 248:169–180
    [Google Scholar]
  74. Sankaran K., Gupta S. D., Wu H. C. 1995; Modification of bacterial lipoproteins. Methods Enzymol 250:683–697
    [Google Scholar]
  75. Schlösser A., Schrempf H. 1996; A lipid-anchored binding protein is a component of an ATP-dependent cellobiose/cellotriose-transport system from the cellulose degrader Streptomyces reticuli . Eur J Biochem 242:332–338 [CrossRef]
    [Google Scholar]
  76. Sutcliffe I. C., Russell R. R. B. 1995; Lipoproteins of Gram-positive bacteria. J Bacteriol 177:1123–1128
    [Google Scholar]
  77. Sutcliffe I. C., Tao L., Ferretti J. J., Russell R. R. B. 1993; MsmE, a lipoprotein involved in sugar transport in Streptococcus mutans . J Bacteriol 175:1853–1855
    [Google Scholar]
  78. Terao Y., Kawabata S., Kunitomo E., Nakagawa I., Hamada S. 2002; Novel laminin-binding protein of Streptococcus pyogenes , Lbp, is involved in adhesion to epithelial cells. Infect Immun 70:993–997
    [Google Scholar]
  79. Tettelin H., Nelson K. E., Paulsen I. T. 36 other authors 2001; Complete genome sequence of a virulent isolate of Streptococcus pneumoniae . Science 293:498–506 [CrossRef]
    [Google Scholar]
  80. Tjalsma H., Kontinen V. P., Prágai Z., Wu H. Y., Meima R., Venema G., Bron S., Sarvas M., van Dijl J. M. 1999a; The role of lipoprotein processing by signal peptidase II in the Gram-positive eubacterium Bacillus subtilis : signal peptidase II is required for the efficient secretion of alpha-amylase, a non-lipoprotein. J Biol Chem 274:1698–1707 [CrossRef]
    [Google Scholar]
  81. Tjalsma H., Zanen G., Venema G., Bron S., van Dijl J. M. 1999b; The potential active site of the lipoprotein-specific (type II) signal peptidase of Bacillus subtilis . J Biol Chem 274:28191–28197 [CrossRef]
    [Google Scholar]
  82. Tjalsma H., Bolhuis A., Jongbloed J. D. H., Bron S., van Dijl J. M. 2000; Signal peptide-dependent protein transport in Bacillus subtilis : a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547 [CrossRef]
    [Google Scholar]
  83. Turner M. S., Woodberry T., Hafner L. M., Giffard P. M. 1999; The BspA locus of Lactobacillus fermentum BR11 encodes an l-cystine uptake system. J Bacteriol 181:2192–2198
    [Google Scholar]
  84. von Heijne G. 1989; The structure of signal peptides from bacterial lipoproteins. Protein Eng 2:531–534 [CrossRef]
    [Google Scholar]
  85. Vosloo W., Tippoo P., Hughes J. E., Harriman N., Emms M., Beatty D. W., Zappe H., Steyn L. M. 1997; Characterisation of a lipoprotein in Mycobacterium bovis (BCG) with sequence similarity to the secreted protein MPB70. Gene 188:123–128 [CrossRef]
    [Google Scholar]
  86. Witke C., Götz F. 1995; Cloning and nucleotide sequence of the signal peptidase II ( Lsp) gene from Staphylococcus carnosus . FEMS Microbiol Lett 126:233–239 [CrossRef]
    [Google Scholar]
  87. Yen M.-R., Harley K. T., Tseng Y.-H., Saier M. H. Jr 2001; Phylogenetic and structural analyses of the oxa1 family of protein translocases. FEMS Microbiol Lett 204:223–231 [CrossRef]
    [Google Scholar]
  88. Young D. B., Garbe T. R. 1991; Lipoprotein antigens of Mycobacterium tuberculosis . Res Microbiol 142:55–65 [CrossRef]
    [Google Scholar]
  89. Zhao X. J., Wu H. C. 1992; Nucleotide sequence of the Staphylococcus aureus signal peptidase II (Lsp) gene. FEBS Lett 299:80–84 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-2065
Loading
/content/journal/micro/10.1099/00221287-148-7-2065
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error