1887

Abstract

The polysaccharide capsule of and several well-characterized virulence proteins are known to contribute to the pathogenesis of pneumococcal disease. However, there is a paucity of data on the expression of their respective genes . In this study, the relative abundance of the mRNA transcripts of the genes encoding pneumolysin (), pneumococcal surface protein A (), pneumococcal surface antigen A () and choline-binding protein A (), and of the first gene of the capsular polysaccharide biosynthesis locus (), was measured in virulent type 2 pneumococci harvested from the blood of BALB/c mice at 12 h and 24 h following intraperitoneal infection. The mRNA levels were then compared, using relative quantitative RT-PCR, with those present in organisms grown in serum broth. The expression of was upregulated threefold at 12 h, and 10-fold at 24 h post-infection; the expression of and was upregulated threefold and fivefold, respectively, at 12 h post-infection. Interestingly, the expression of was 36-fold higher at 24 h post-infection whereas the expression of was upregulated approximately fourfold at 12 and 24 h post-infection. However, mRNA levels remained comparable and . When organisms were grown in whole blood or THY broth, the relative expression of these genes in the two growth media also differed markedly. This work provides direct molecular evidence that known virulence-associated genes of are differentially expressed . Data on the relative expression of these genes in different growth media also suggests that the regulation of expression of these genes is highly complex and multifactorial.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-2045
2002-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1482045a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-2045&mimeType=html&fmt=ahah

References

  1. Alexander J. E., Lock R. A., Peeters C. C. A. M., Poolman J. T., Andrew P. W., Mitchell T. J., Hansman D., Paton J. C. 1994; Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae . Infect Immun 62:5683–5688
    [Google Scholar]
  2. Austrian R. 1981; Some observations on the pneumococcus and on the current status of pneumococcal disease and its prevention. Rev Infect Dis 3:SupplS1–S17 [CrossRef]
    [Google Scholar]
  3. Avery O. T., MacLeod C. M., McCarty M. 1944; Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158 [CrossRef]
    [Google Scholar]
  4. Bentley R. W., Leigh J. A., Collins M. D. 1991; Intrageneric structure of Streptococcus based on comparative analysis of small-subunit rRNA sequences. Int J Syst Bacteriol 41:487–494 [CrossRef]
    [Google Scholar]
  5. Benton K. A., Everson M. P., Briles D. E. 1995; A pneumolysin-negative mutant of Streptococcus pneumoniae causes chronic bacteremia rather than acute sepsis in mice. Infect Immun 63:448–455
    [Google Scholar]
  6. Berry A. M., Paton J. C. 1996; Sequence heterogeneity of PsaA, a 37-kDa putative adhesin essential for virulence of Streptococcus pneumoniae . Infect Immun 64:5255–5262
    [Google Scholar]
  7. Berry A. M., Paton J. C. 2000; Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect Immun 68:133–140 [CrossRef]
    [Google Scholar]
  8. Berry A. M., Yother J., Briles D. E., Hansman D., Paton J. C. 1989; Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae . Infect Immun 57:2037–2042
    [Google Scholar]
  9. Berry A. M., Ogunniyi A. D., Miller D. C., Paton J. C. 1999; Comparative virulence of Streptococcus pneumoniae strains with insertion-duplication, point, and deletion mutations in the pneumolysin gene. Infect Immun 67:981–985
    [Google Scholar]
  10. Boulnois G. J. 1992; Pneumococcal proteins and the pathogenesis of disease caused by Streptococcus pneumoniae . J Gen Microbiol 138:249–259 [CrossRef]
    [Google Scholar]
  11. Boulnois G. J., Paton J. C., Mitchell T. J., Andrew P. W. 1991; Structure and function of pneumolysin, the multifunctional, thiol-activated toxin of Streptococcus pneumoniae . Mol Microbiol 5:2611–2616 [CrossRef]
    [Google Scholar]
  12. Briles D. E., Ades E., Paton J. C., Sampson J. S., Carlone G. M., Huebner R. C., Virolainen A., Swiatlo E., Hollingshead S. K. 2000a; Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae . Infect Immun 68:796–800 [CrossRef]
    [Google Scholar]
  13. Briles D. E., Hollingshead S., Brooks-Walter A. 7 other authors 2000b; The potential to use PspA and other pneumococcal proteins to elicit protection against pneumococcal infection. Vaccine 18:1707–1711 [CrossRef]
    [Google Scholar]
  14. Brooks-Walter A., Briles D. E., Hollingshead S. K. 1999; The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect Immun 67:6533–6542
    [Google Scholar]
  15. Claverys J. P., Granadel C., Berry A. M., Paton J. C. 1999; Penicillin tolerance in Streptococcus pneumoniae , autolysis and the Psa ATP-binding cassette (ABC) manganese permease. Mol Microbiol 32:881–883 [CrossRef]
    [Google Scholar]
  16. Dintilhac A., Alloing G., Granadel C., Claverys J. P. 1997; Competence and virulence of Streptococcus pneumoniae : Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25:727–739 [CrossRef]
    [Google Scholar]
  17. Feldman C., Mitchell T. J., Andrew P. W., Boulnois G. J., Read R. C., Todd H. C., Cole P. J., Wilson R. 1990; The effect of Streptococcus pneumoniae pneumolysin on human respiratory epithelium in vitro . Microb Pathog 9:275–284 [CrossRef]
    [Google Scholar]
  18. Ferrante A., Rowan-Kelly B., Paton J. C. 1984; Inhibition of in vitro human lymphocyte response by the pneumococcal toxin pneumolysin. Infect Immun 46:585–589
    [Google Scholar]
  19. Garenne M., Ronsmans C., Campbell H. 1992; The magnitude of mortality from acute respiratory infections in children under 5 years in developing countries. World Health Stat Q 46:180–191
    [Google Scholar]
  20. Gosink K. K., Mann E. R., Guglielmo C., Tuomanen E. I., Masure H. R. 2000; Role of novel choline binding proteins in virulence of Streptococcus pneumoniae . Infect Immun 68:5690–5695 [CrossRef]
    [Google Scholar]
  21. Hammerschmidt S., Talay S. R., Brandtzaeg P., Chhatwal G. S. 1997; SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol Microbiol 25:1113–1124 [CrossRef]
    [Google Scholar]
  22. Hammerschmidt S., Bethe G., Remane P. H., Chhatwal G. S. 1999; Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae . Infect Immun 67:1683–1687
    [Google Scholar]
  23. Hammerschmidt S., Tillig M. P., Wolff S., Vaerman J. P., Chhatwal G. S. 2000; Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol Microbiol 36:726–736
    [Google Scholar]
  24. Houldsworth S., Andrew P. W., Mitchell T. J. 1994; Pneumolysin stimulates production of tumor necrosis factor alpha and interleukin-1 beta by human mononuclear phagocytes. Infect Immun 62:1501–1503
    [Google Scholar]
  25. Iannelli F., Pearce B. J., Pozzi G. 1999; The type 2 capsule locus of Streptococcus pneumoniae . J Bacteriol 181:2652–2654
    [Google Scholar]
  26. Jakubovics N. S., Smith A. W., Jenkinson H. F. 2000; Expression of the virulence-related Sca (Mn2+) permease in Streptococcus gordonii is regulated by a diphtheria toxin metallorepressor-like protein ScaR. Mol Microbiol 38:140–153 [CrossRef]
    [Google Scholar]
  27. Kim J. O., Weiser J. N. 1998; Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae . J Infect Dis 177:368–377 [CrossRef]
    [Google Scholar]
  28. Lankinen K. S., Ruutu P., Nohynek H., Lucero M., Paton J. C., Leinonen M. 1999; Pneumococcal pneumonia diagnosis by demonstration of pneumolysin antibodies in precipitated immune complexes: a study in 350 Philippine children with acute lower respiratory infection. Scand J Infect Dis 31:155–161 [CrossRef]
    [Google Scholar]
  29. Lawrence M. C., Pilling P. A., Epa V. C., Berry A. M., Ogunniyi A. D., Paton J. C. 1998; The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure 6:1553–1561 [CrossRef]
    [Google Scholar]
  30. McDaniel L. S., Yother J., Vijayakumar M., McGarry L., Guild W. R., Briles D. E. 1987; Use of insertional inactivation to facilitate studies of biological properties of pneumococcal surface protein A (PspA. J Exp Med 165:381–394 [CrossRef]
    [Google Scholar]
  31. Mitchell T. J., Andrew P. W., Saunders F. K., Smith A. N., Boulnois G. J. 1991; Complement activation and antibody binding by pneumolysin via a region of the toxin homologous to a human acute-phase protein. Mol Microbiol 5:1883–1888 [CrossRef]
    [Google Scholar]
  32. Mortier-Barrière I., de Saizieu A., Claverys J. P., Martin B. 1998; Competence-specific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae . Mol Microbiol 27:159–170 [CrossRef]
    [Google Scholar]
  33. Musher D. M. 1992; Infections caused by Streptococcus pneumoniae : clinical spectrum, pathogenesis, immunity, and treatment. Clin Infect Dis 14:801–809 [CrossRef]
    [Google Scholar]
  34. Novak R., Braun J. S., Charpentier E., Tuomanen E. 1998; Penicillin tolerance genes of Streptococcus pneumoniae : the ABC-type manganese permease complex Psa. Mol Microbiol 29:1285–1296 [CrossRef]
    [Google Scholar]
  35. Obaro S. K. 2000; Prospects for pneumococcal vaccination in African children. Acta Trop 75:141–153 [CrossRef]
    [Google Scholar]
  36. Ogunniyi A. D., Folland R. L., Briles D. E., Hollingshead S. K., Paton J. C. 2000; Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae . Infect Immun 68:3028–3033 [CrossRef]
    [Google Scholar]
  37. Orihuela C. J., Janssen R., Robb C. W., Watson D. A., Niesel D. W. 2000; Peritoneal culture alters Streptococcus pneumoniae protein profiles and virulence properties. Infect Immun 68:6082–6086 [CrossRef]
    [Google Scholar]
  38. Paton J. C. 1996; The contribution of pneumolysin to the pathogenicity of Streptococcus pneumoniae . Trends Microbiol 4:103–106 [CrossRef]
    [Google Scholar]
  39. Paton J. C. 1998; Novel pneumococcal surface proteins: role in virulence and vaccine potential. Trends Microbiol 6:85–87 [CrossRef]
    [Google Scholar]
  40. Paton J. C., Ferrante A. 1983; Inhibition of human polymorphonuclear leukocyte respiratory burst, migration and bactericidal activity by the pneumococcal toxin, pneumolysin. Infect Immun 41:1212–1216
    [Google Scholar]
  41. Paton J. C., Morona J. K. 2000; Streptococcus pneumoniae capsular polysaccharide. In Gram-Positive Pathogens pp 201–213 Edited by Fischetti V. A., Novick R., Ferretti J., Portnoy D., Rood J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Paton J. C., Rowan-Kelly B., Ferrante A. 1984; Activation of human complement by the pneumococcal toxin, pneumolysin. Infect Immun 43:1085–1087
    [Google Scholar]
  43. Paton J. C., Andrew P. W., Boulnois G. J., Mitchell T. J. 1993; Molecular analysis of the pathogenicity of Streptococcus pneumoniae : the role of pneumococcal proteins. Annu Rev Microbiol 47:89–115 [CrossRef]
    [Google Scholar]
  44. Paton J. C., Berry A. M., Lock R. A. 1997; Molecular analysis of putative pneumococcal virulence proteins. Microb Drug Resist 3:1–10 [CrossRef]
    [Google Scholar]
  45. Rapola S., Jantti V., Haikala R. 8 other authors 2000; Natural development of antibodies to pneumococcal surface protein A, pneumococcal surface adhesin A, and pneumolysin in relation to pneumococcal carriage and acute otitis media. J Infect Dis 182:1146–1152 [CrossRef]
    [Google Scholar]
  46. Ring A., Weiser J. N., Tuomanen E. I. 1998; Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest 102:347–360 [CrossRef]
    [Google Scholar]
  47. Rosenow C., Ryan P., Weiser J. N., Johnson S., Fontan P., Ortqvist A., Masure H. R. 1997; Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae . Mol Microbiol 25:819–829 [CrossRef]
    [Google Scholar]
  48. Smith B. L., Hostetter M. K. 2000; C3 as substrate for adhesion of Streptococcus pneumoniae . J Infect Dis 182:497–508 [CrossRef]
    [Google Scholar]
  49. Talbot U., Paton A. W., Paton J. C. 1996; Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect Immun 64:3772–3777
    [Google Scholar]
  50. Tu A. H., Fulgham R. L., McCrory M. A., Briles D. E., Szalai A. J. 1999; Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae . Infect Immun 67:4720–4724
    [Google Scholar]
  51. Tuomanen E. I., Austrian R., Masure H. R. 1995; The pathogenesis of pneumococcal infection: correlation of clinical events with molecular mechanisms. N Engl J Med 332:1280–1284 [CrossRef]
    [Google Scholar]
  52. Virolainen A., Russell W., Crain M. J., Rapola S., Kayhty H., Briles D. E. 2000; Human antibodies to pneumococcal surface protein A in health and disease. Pediatr Infect Dis J 19:134–138 [CrossRef]
    [Google Scholar]
  53. Walker J. A., Allen R. L., Falmagne P., Johnson M. K., Boulnois G. J. 1987; Molecular cloning, characterization, and complete nucleotide sequence of the gene for pneumolysin, the sulfhydryl-activated toxin of Streptococcus pneumoniae . Infect Immun 55:1184–1189
    [Google Scholar]
  54. Whitney C. G., Farley M. M., Hadler J. 10 other authors 2000; Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States. N Engl J Med 343:1917–1924 [CrossRef]
    [Google Scholar]
  55. World Health Organization 1997 Global Programme for Vaccines and Immunization (Vaccine Research and Development). Report of The Technical Review Group Meeting, July 1997–June 1998; Achievements and Plan of Activities: Meningococcal and Pneumococcal Disease Vaccines pp 26–30 Geneva, Switzerland: WHO;
    [Google Scholar]
  56. Yother J., Briles D. E. 1992; Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae , as revealed by sequence analysis. J Bacteriol 174:601–609
    [Google Scholar]
  57. Zhang J. R., Mostov K. E., Lamm M. E., Nanno M., Shimida S., Ohwaki M., Tuomanen E. 2000; The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102:827–837 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-2045
Loading
/content/journal/micro/10.1099/00221287-148-7-2045
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error