1887

Abstract

The significance of charged residues for the target-cell binding, potency and specificity of pediocin-like bacteriocins has been studied by site-directed mutagenesis of sakacin P. Most of the charged residues are located in the N-terminal half, which is thought to mediate the initial binding of these bacteriocins to target cells through electrostatic interaction. All the mutated peptides in which the net positive charge was reduced by one (by replacing a charged residue with threonine) exhibited reduced binding to target cells and a 2–15-fold reduction in potency. The least deleterious of these mutations was the removal of the positive charge in position 8 (H8T). This mutation was, in fact, less deleterious than the conservative His to Lys mutation, indicating that the positive charge in position 8 is not of major importance. Somewhat more deleterious was the removal of positive charges at the N- and C-terminal ends (K1T, K43T). Most deleterious was the elimination of the positive charge at positions 11 and (but to a lesser extent) 12, demonstrating the importance of the cationic patch in the middle of the N-terminal half of pediocin-like bacteriocins. Mutated peptides in which the net positive charge was increased by one were also constructed. Some of these exhibited increased cell binding and a potency that was the same as (44K, i.e. an extra positive charge at the C-terminus), or somewhat greater (T20K) than, that of sakacin P, whereas others (0K, i.e. an extra positive charge at the N-terminus) had reduced potency. Sakacin P contains only one negatively charged residue (Asp17). This negative charge and its orientation in space were crucial for activity, since the Asp to Asn mutation and (especially) the conservative Asp to Glu mutation were deleterious. Mutations that made the peptide less cationic had, overall, less effect on the potency toward the strain than on the potency toward the three other strains tested, whereas the opposite was the case for mutations that made the peptide more cationic. Thus, charged residues in the N-terminal half may – apparently via the initial electrostatic binding of the bacteriocin to target cells – influence the target-cell specificity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-2019
2002-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1482019a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-2019&mimeType=html&fmt=ahah

References

  1. Atrih A., Rekhif N., Moir A. J. G., Lebrihi A., Lefebvre G. 2001; Mode of action, purification and amino acid sequence of plantaricin C19, an anti- Listeria bacteriocin produced by Lactobacillus plantarum C19. Int J Food Microbiol 68:93–104 [CrossRef]
    [Google Scholar]
  2. Aukrust T. W., Brurberg M. B., Nes I. F. 1995; Transformation of Lactobacilli by electroporation. In Electroporation and Electrofusion in Bacteria, pp 201–208 Edited by Nickloff J. A. Totowa, NJ: Human Press;
    [Google Scholar]
  3. Axelsson L., Holck A. 1995; The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 177:2125–2137
    [Google Scholar]
  4. Axelsson L., Katla T., Bjørnslett M., Eijsink V. G. H., Holck A. 1998; A system for heterologous expression of bacteriocins in Lactobacillus sake . FEMS Microbiol Lett 16:137–143
    [Google Scholar]
  5. Aymerich T., Holo H., Håvarstein L. S., Hugas M., Garriga M., Nes I. F. 1996; Biochemical and genetic characterization of enterocin A from Enterococcus faecium , a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682
    [Google Scholar]
  6. Bennik M. H. J., Vanloo B., Brasseur R., Gorris L. G. M., Smid E. J. 1998; A novel bacteriocin with a YGNGV motif from vegetable-associated Enterococcus mundtii : full characterization and interaction with target organisms. Biochim Biophys Acta 1373:47–58 [CrossRef]
    [Google Scholar]
  7. Bhugaloo-Vial P., Dousset X., Metivier A., Sorokine O., Anglade P., Boyaval P., Marion D. 1996; Purification and amino acid sequences of piscicolins V1a and V1b, two class IIa bacteriocins secreted by Carnobacterium piscicola V1 that display significantly different levels of specific inhibitory activity. Appl Environ Microbiol 62:4410–4416
    [Google Scholar]
  8. Bhunia A. K., Johnson M. C., Ray B., Kalchayanand N. 1991; Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J Appl Bacteriol 70:25–33 [CrossRef]
    [Google Scholar]
  9. Biswas S. R., Ray P., Johnson M. C., Ray B. 1991; Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl Environ Microbiol 57:1265–1267
    [Google Scholar]
  10. Chen Y., Ludescher R. D., Montville T. J. 1997a; Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles. Appl Environ Microbiol 63:4770–4777
    [Google Scholar]
  11. Chen Y., Shapira R., Eisenstein M., Montville T. J. 1997b; Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure. Appl Environ Microbiol 63:524–531
    [Google Scholar]
  12. Chikindas M. L., Garcia-Garcerá M. J., Driessen A. J. M., Ledeboer A. M., Nissen-Meyer J., Nes I. F., Abee T., Konings W. N., Venema G. 1993; Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl Environ Microbiol 59:3577–3584
    [Google Scholar]
  13. Cintas L. M., Casaus P., Håvarstein L. S., Hernández P. E., Nes I. F. 1997; Biochemical and genetic characterization of enterocin P, a novel sec -dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330
    [Google Scholar]
  14. Eijsink V. G. H., Skeie M., Middelhoven P. H., Brurberg M. B., Nes I. F. 1998; Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 64:3275–3281
    [Google Scholar]
  15. Fimland G., Blingsmo O. R., Sletten K., Jung G., Nes I. F., Nissen-Meyer J. 1996; New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Appl Environ Microbiol 62:3313–3318
    [Google Scholar]
  16. Fimland G., Jack R., Jung G., Nes I. F., Nissen-Meyer J. 1998; The bactericidal activity of pediocin PA-1 is specifically inhibited by a 15-mer fragment that spans the bacteriocin from the center toward the C terminus. Appl Environ Microbiol 64:5057–5060
    [Google Scholar]
  17. Fimland G., Johnsen L., Axelsson L., Brurberg M. B., Nes I. F., Eijsink V. G. H., Nissen-Meyer J. 2000; A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. J Bacteriol 182:2643–2648 [CrossRef]
    [Google Scholar]
  18. Fleury Y., Dayem M. A., Montagne J. J., Chaboisseau E., Le Caer J. P., Nicolas P., Delfour A. 1996; Covalent structure, synthesis, and structure-function studies of mesentericin Y 10537, a defensive peptide from gram-positive bacteria Leuconostoc mesenteroides . J Biol Chem 271:14421–14429 [CrossRef]
    [Google Scholar]
  19. Fregeau Gallagher N. L., Sailer M., Niemczura W. P., Nakashima T. T., Stiles M. E., Vederas J. C. 1997; Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry 36:15062–15072 [CrossRef]
    [Google Scholar]
  20. Hastings J. W., Sailer M., Johnson K., Roy K. L., Vederas J. C., Stiles M. E. 1991; Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidium . J Bacteriol 173:7491–7500
    [Google Scholar]
  21. Héchard Y., Dérijard B., Letellier F., Cenatiempo Y. 1992; Characterization and purification of mesentericin Y105, an anti- Listeria bacteriocin from Leuconostoc mesenteroides . J Gen Microbiol 138:2725–2731 [CrossRef]
    [Google Scholar]
  22. Henderson J. T., Chopko A. L., van Wassenaar D. 1992; Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch Biochem Biophys 295:5–12 [CrossRef]
    [Google Scholar]
  23. Holck A., Axelsson L., Birkeland S.-E., Aukrust T., Blom H. 1992; Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Gen Microbiol 138:2715–2720 [CrossRef]
    [Google Scholar]
  24. Jack R. W., Wan J., Gordon J., Harmark K., Davidson B. E., Hillier A. J., Wettenhall R. E. H., Hickey M. W., Coventry M. J. 1996; Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126. Appl Environ Microbiol 62:2897–2903
    [Google Scholar]
  25. Johnsen L., Fimland G., Eijsink V., Nissen-Meyer J. 2000; Engineering increased stability in the antimicrobial peptide pediocin PA-1. Appl Environ Microbiol 66:4798–4802 [CrossRef]
    [Google Scholar]
  26. Le Marrec C., Hyronimus B., Bressollier P., Verneuil B., Urdaci M. C. 2000; Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4 . Appl Environ Microbiol 66:5213–5220 [CrossRef]
    [Google Scholar]
  27. Marugg J. D., Gonzalez C. F., Kunka B. S., Ledeboer A. M., Pucci M. J., Toonen M. Y., Walker S. A., Zoetmulder L. C. M., Vandenbergh P. A. 1992; Cloning, expression and nucleotide sequence of genes involved in the production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0. Appl Environ Microbiol 58:2360–2367
    [Google Scholar]
  28. Métivier A., Pilet M.-F., Dousset X. 7 other authors 1998; Divercin V41, a new bacteriocin with two disulphide bonds produced by Carnobacterium divergens V41: primary structure and genomic organization. Microbiology 144:2837–2844 [CrossRef]
    [Google Scholar]
  29. Miller K. W., Schamber R., Chen Y., Ray B. 1998a; Production of active chimeric pediocin AcH in Escherichia coli in the absence of processing and secretion genes from the Pediococcus pap operon. Appl Environ Microbiol 64:14–20
    [Google Scholar]
  30. Miller K. W., Schamber R., Osmanagaoglu O., Ray B. 1998b; Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity. Appl Environ Microbiol 64:1997–2005
    [Google Scholar]
  31. Nes I. F., Eijsink V. G. H. 1999; Regulation of group II peptide bacteriocin synthesis by quorum-sensing mechanisms. In Cell-Cell Signaling in Bacteria pp 175–192 Edited by Dunny G. M., Winans S. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Nes I. F., Diep D. B., Håvarstein L. S., Brurberg M. B., Eijsink V., Holo H. 1996; Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Leeuwenhoek 70:113–128 [CrossRef]
    [Google Scholar]
  33. Nes I. F., Holo H., Fimland G., Hauge H. H., Nissen-Meyer J. 2002; Unmodified peptide-bacteriocins (class II) produced by lactic acid bacteria. In Peptide Antibiotics: Discovery, Modes of Action and Application , section B, Distribution of Antimicrobial Peptides pp 81–115 Edited by Dutton C. J., Haxell M. A., McArthur H. A. I., Wax R. G. New York: Marcel Dekker;
    [Google Scholar]
  34. Nieto Lozano J. C., Nissen-Meyer J., Sletten K., Peláz C., Nes I. F. 1992; Purification and amino acid sequences of a bacteriocin produced by Pediococcus acidilactici . J Gen Microbiol 138:1985–1990 [CrossRef]
    [Google Scholar]
  35. Nissen-Meyer J., Nes I. F. 1997; Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol 167:67–77 [CrossRef]
    [Google Scholar]
  36. Nissen-Meyer J., Holo H., Håvarstein L. S., Sletten K., Nes I. F. 1992; A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 174:5686–5692
    [Google Scholar]
  37. Nissen-Meyer J., Hauge H. H., Fimland G., Eijsink V. G. H., Nes I. F. 1997; Ribosomally synthesized antimicrobial peptides produced by lactic acid bacteria: Their function, structure, biogenesis, and their mechanism of action. Recent Res Devel Microbiol 1:141–154
    [Google Scholar]
  38. Quadri L. E. N., Sailer M., Roy K. L., Vederas J. C., Stiles M. E. 1994; Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J Biol Chem 269:12204–12211
    [Google Scholar]
  39. Stoffels G., Nissen-Meyer J., Gudmundsdottir A., Sletten K., Holo H., Nes I. F. 1992; Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp. Appl Environ Microbiol 58:1417–1422
    [Google Scholar]
  40. Tichaczek P. S., Nissen-Meyer J., Nes I. F., Vogel R. F., Hammes W. P. 1992; Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673. Syst Appl Microbiol 15:460–468 [CrossRef]
    [Google Scholar]
  41. Tichaczek P. S., Vogel R. F., Hammes W. P. 1993; Cloning and sequencing of curA encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH1174. Arch Microbiol 160:279–283 [CrossRef]
    [Google Scholar]
  42. Tichaczek P. S., Vogel R. F., Hammes W. P. 1994; Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH673. Microbiology 140:361–367 [CrossRef]
    [Google Scholar]
  43. Tomita H., Fujimoto S., Tanimoto K., Ike Y. 1996; Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. J Bacteriol 178:3585–3593
    [Google Scholar]
  44. Vaughan A., Eijsink V. G. H., O’Sullivan T. F., O’Hanlon K., van Sinderen D. 2001; An analysis of bacteriocins produced by lactic acid bacteria isolated from malted barley. J Appl Microbiol 91:131–138 [CrossRef]
    [Google Scholar]
  45. von Wright A., Tynkkynen S., Suominen M. 1987; Cloning of a Streptococcus lactis subsp. lactis chromosomal fragment associated with the ability to grow in milk. Appl Environ Microbiol 53:1584–1588
    [Google Scholar]
  46. Wang Y., Henz M. E., Fregeau Gallagher N. L., Chai S., Gibbs A. C., Yan L. Z., Stiles M. E., Wishart D. S., Vederas J. C. 1999; Solution structure of carnobacteriocin B2 and implications for structure-activity relationships among type IIa bacteriocins from lactic acid bacteria. Biochemistry 38:15438–15447 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-2019
Loading
/content/journal/micro/10.1099/00221287-148-7-2019
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error