1887

Abstract

represents an alternative mycobacterial cloning host that has been largely overlooked to date. The main reason for this may be the reported non-transformability of this species, specifically the so-called Stanford strain (NCTC 11659), with expression vectors that use kanamycin resistance as a selection method. However, this strain can be transformed using hygromycin resistance as an alternative selectable phenotype. The present study has shown that in contrast to previous reports, (ATCC 15483) is capable of being transformed with a range of vectors encoding kanamycin resistance as the selectable marker. Thereafter, the expression of the reporter gene in , BCG and mc155 was evaluated using a range of characterized mycobacterial promoter sequences (, , AN, and ) cloned in the same promoter probe vector. In general, the promoters showed similar levels of activity in the three species, demonstrating that existing expression systems can readily be employed with (ATCC 15483). This was further confirmed by the observation that was capable of stable, expression of recombinant S1 subunit of pertussis toxin at levels equivalent to those obtained with BCG and . Analysis of structural and functional stability of a range of vectors demonstrated that the incidence of instability noted for was lower than that recorded for . Taken together, the results indicate that is an additional cloning host which may prove useful for specific aspects of mycobacterial biology and provide increased flexibility to the field of recombinant protein technology for mycobacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-1999
2002-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1481999a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-1999&mimeType=html&fmt=ahah

References

  1. Abomoelak B., Huygen K., Kremer L., Turnee M., Locht C. 1999; Humoral and cellular immune responses in mice immunized with recombinant Mycobacterium bovis Bacillus Calmette-Guérin producing a pertussis toxin-tetanus toxin hybrid protein. Infect Immun 67:5100–5105
    [Google Scholar]
  2. Abou-Zeid C., Gares M. P., Inwald J. 10 other authors 1997; Induction of a type-1 immune response to a recombinant antigen from Mycobacterium tuberculosis expressed in Mycobacterium vaccae . Infect Immun 65:1856–1862
    [Google Scholar]
  3. Chawla M., Das Gupta S. 1999; Transposition-induced structural instability of Escherichia coli –mycobacteria shuttle vectors. Plasmid 41:135–140 [CrossRef]
    [Google Scholar]
  4. Clarke-Curtiss J. E., Jacobs W. R., Docherty M. A., Ritchie L. R., Curtiss R.III. 1985; Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae . J Bacteriol 161:1903–1102
    [Google Scholar]
  5. Corlan E., Marica C., Macavei C., Stanford J. L., Stanford C. A. 1997; Immunotherapy with Mycobacterium vaccae in the treatment of tuberculosis in Romania. 2. Chronic or relapsed disease. Respir Med 91:21–29 [CrossRef]
    [Google Scholar]
  6. Cormack B. P., Valdivia R. H., Falkow S. 1996; FACS optimized mutants of green fluorescent protein (GFP. Gene 173:33–38 [CrossRef]
    [Google Scholar]
  7. Das Gupta S. K., Bashyam M. D., Tyagi A. K. 1993; Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector. J Bacteriol 175:5186–5192
    [Google Scholar]
  8. Das Gupta S., Jain S., Kaushal D., Tyagi A. K. 1998; Expression systems for study of mycobacterial gene regulation and development of recombinant BCG vaccines. Biochem Biophys Res Commun 246:797–804 [CrossRef]
    [Google Scholar]
  9. Dellagostin O. A., Esposito G., Earles L.-J., Dale J. W., McFadden J. J. 1995; Activity of mycobacterial promoters during intracellular and extracellular growth. Microbiology 141:1785–1792 [CrossRef]
    [Google Scholar]
  10. De Smet K. A. L., Kempsell K. E., Gallagher A., Duncan K., Young D. B. 1999; Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis . Microbiology 145:3177–3184
    [Google Scholar]
  11. Garbe T. R., Barathi J., Barnini S., Zhang Y., Abou-Zeid C., Tang D., Mukherjee R., Young D. B. 1994; Transformation of mycobacterial species using hygromycin resistance as a selectable marker. Microbiology 140:133–138 [CrossRef]
    [Google Scholar]
  12. Golansaka E., Brzostek A., Kiatpapan P., Dziadek J. 1998; Characterisation of a new host-vector system for fast-growing mycobacteria. Acta Microbiol Pol 47:335–343
    [Google Scholar]
  13. Haeseleer F. 1994; Structural instability of recombinant plasmids in mycobacteria. Res Microbiol 145:683–687 [CrossRef]
    [Google Scholar]
  14. Harth G., Lee B. Y., Horwitz M. A. 1997; High-level heterologous expression and secretion in rapidly growing non-pathogenic mycobacteria of four major Mycobacterium tuberculosis extracellular proteins considered to be leading vaccine candidates and drug targets. Infect Immun 65:2321–2328
    [Google Scholar]
  15. Hermans J., de Bont J. A. M. 1996; Techniques for genetic engineering in mycobacteria. Antonie Leeuwenhoek 69:243–256 [CrossRef]
    [Google Scholar]
  16. Hermans J., Boschloo J. G., de Bont J. A. M. 1990; Transformation of Mycobacterium aurum by electroporation: the use of glycine, lysozyme and isonicotinic acid hydrazide in enhancing transformation efficiency. FEMS Microbiol Lett 72:221–224 [CrossRef]
    [Google Scholar]
  17. Hermans J., Suy I. M. L., de Bont J. A. M. 1993; Transformation of Gram-positive microorganisms with the Gram-negative broad-host-range cosmid vector pJRD251. FEMS Microbiol Lett 108:201–204 [CrossRef]
    [Google Scholar]
  18. Herrmann J. L., O’Gaora P., Gallagher A., Thole J. E., Young D. B. 1996; Bacterial glycoproteins: a link between glycosylation and proteolytic cleavage of a 19 kDa antigen from Mycobacterium tuberculosis . EMBO J 15:3457–3554
    [Google Scholar]
  19. Hetzel C., Janssen R., Ely S. J., Kristensen N. M., Bunting K., Cooper J. B., Lamb J. R., Young D. B., Thole J. E. R. 1998; An epitope delivery system for use with recombinant mycobacteria. Infect Immun 66:3643–3648
    [Google Scholar]
  20. Horn C., Namane A., Pescher P., Rivière M., Romain F., Puzo G., Barzu O., Marchal G. 1999; Decreased capacity of recombinant 45/47 kDa molecules (Apa) of Mycobacterium tuberculosis to stimulate T lymphocyte responses related to changes in their mannosylation pattern. J Biol Chem 274:32023–32030 [CrossRef]
    [Google Scholar]
  21. Jacobs W. R. Jr 2000; Mycobacterium tuberculosis : a once genetically intractable organism. In Molecular Genetics of Mycobacteria, pp 1–16 Edited by Hatfull G. F., Jacobs W. R. Jr Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Kieser T., Moss T., Dale J. W., Hopwood D. A. 1986; Cloning and expression of Mycobacterium bovis DNA in ‘ Streptomyces lividans ’. J Bacteriol 168:72–80
    [Google Scholar]
  23. Kumar D., Srivastava B. S., Srivastava R. 1998; Genetic rearrangements leading to disruption of heterologous gene expression in mycobacteria: an observation with Escherichia coli β-galactosidase in Mycobacterium smegmatis and its implication in vaccine development. Vaccine 16:1212–1215 [CrossRef]
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  25. Lagranderie M., Winter N., Balazuc A. M., Gicquel B., Gheorghiu M. 1998; A cocktail of Mycobacterium bovis BCG recombinants expressing the SIV Nef, Env, and Gag antigens induces antibody and cytotoxic responses in mice vaccinated by different mucosal routes. AIDS Res Hum Retroviruses 18:1625–1633
    [Google Scholar]
  26. Lazraq R., Clavel-Seres S., David H. L. 1991; Transformation of distinct mycobacterial species by shuttle vectors derived from the Mycobacterium fortuitum pAL5000 plasmid. Curr Microbiol 22:9–13 [CrossRef]
    [Google Scholar]
  27. Leung N. J., Aldovini A., Young R. 7 other authors 2000; The kinetics of specific immune response in rhesus monkeys inoculated with live recombinant BCG expressing SIV gag, pol, env and nef proteins. Virology 268:94–103 [CrossRef]
    [Google Scholar]
  28. Lim E. M., Rauzier J., Timm J., Torrea G., Murray A., Gicquel B., Portnoi D. 1995; Identification of Mycobacterium tuberculosis DNA sequences encoding exported proteins by using phoA gene fusions. J. Bacteriol 177:59–65
    [Google Scholar]
  29. Mahenthiralingam E., Draper P., Davis E. O., Colston M. J. 1993; Cloning and sequencing of the gene which encodes the highly inducible acetamidase of Mycobacterium smegmatis . J Gen Microbiol 139:575–583 [CrossRef]
    [Google Scholar]
  30. Miller J. H. 1992 A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Murray A., Winter N., Lagranderie M. 7 other authors 1992; Expression of Escherichia coli β-galactosidase in Mycobacterium bovis BCG using an expression system isolated from Mycobacterium paratuberculosis which induced humoral and cellular immune responses. Mol Microbiol 6:3331–3342 [CrossRef]
    [Google Scholar]
  32. Nascimento I. P., Dias W. O., Mazzantini R. P. 11 other authors 2000; Recombinant Mycobacterium bovis BCG expressing pertussis toxin subunit S1 induces protection against an intracerebral challenge with live Bordetella pertussis in mice. Infect Immun 68:4877–4883 [CrossRef]
    [Google Scholar]
  33. O’Gaora P. 1997; Expression of genes in mycobacteria. Methods Mol Microbiol 101:261–274
    [Google Scholar]
  34. Ohara N., Yamada T. 2001; Recombinant BCG vaccines. Vaccine 19:4089–4098 [CrossRef]
    [Google Scholar]
  35. Onyebujoh P. C., Abdulmumini T., Robinson S., Rook G. A., Stanford J. L. 1995; Immunotherapy with Mycobacterium vaccae as an addition to chemotherapy for the treatment of pulmonary tuberculosis under difficult conditions in Africa. Respir Med 89:199–207 [CrossRef]
    [Google Scholar]
  36. Parish T., Stoker N. G. 1997; Electroporation of mycobacteria. Methods Mol Microbiol 101:129–144
    [Google Scholar]
  37. Parish T., Mahenthiralingam E., Draper P., Davis E. O., Colston M. J. 1997; Regulation of the inducible acetamidase gene of Mycobacterium smegmatis . Microbiology 143:2267–2276 [CrossRef]
    [Google Scholar]
  38. Pashley C., Stoker N. G. 2000; Plasmids in mycobacteria. In Molecular Genetics of Mycobacteria, pp 55–67 Edited by Hatfull G. F., Jacobs W. R. Jr Washington DC: American Society for Microbiology;
    [Google Scholar]
  39. Santos A. R., Miranda A. B., Lima L. M., Suffys P. N., Degrave W. M. 1992; Method for high yield preparation in large and small scale of nucleic acids from mycobacteria. J Microbiol Methods 15:83–94 [CrossRef]
    [Google Scholar]
  40. Sato H., Sato Y., Ohishi I. 1991; Comparison of pertussis toxin (PT)-neutralizing activities and mouse-protective activities of anti-PT mouse monoclonal antibodies. Infect Immun 59:3832–3835
    [Google Scholar]
  41. Snapper S. B., Melton R. E., Mustaga S., Kieser T., Jacobs W. R. 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol 4:1911–1919 [CrossRef]
    [Google Scholar]
  42. Stolt P., Stoker N. G. 1996; Functional definition of regions necessary for replication and incompatibility in the Mycobacterium fortuitum plasmid pAL5000. Microbiology 142:2795–2802 [CrossRef]
    [Google Scholar]
  43. Stover C. K., de la Cruz V. F., Fuerst T. R. 11 other authors 1991; New use of BCG for recombinant vaccines. Nature 351:456–460 [CrossRef]
    [Google Scholar]
  44. Timm J., Lim E. M., Gicquel B. 1994; Escherichia coli –mycobacteria shuttle vectors for operon and gene fusions to lacZ : the pJEM series. J Bacteriol 176:6749–6753
    [Google Scholar]
  45. Towbin H., Staehelin R., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354 [CrossRef]
    [Google Scholar]
  46. Triccas J. A., Parish T., Britton W. J., Gicquel B. 1998; An inducible expression system permitting the efficient purification of recombinant antigens from Mycobacterium smegmatis . FEMS Microbiol Lett 167:151–156 [CrossRef]
    [Google Scholar]
  47. Yasutomi Y., Koenig S., Haun S. S. 7 other authors 1993; Immunization with recombinant BCG-SIV elicits SIV-specific cytotoxic T lymphocytes in rhesus monkeys. J Immunol 150:3101–3107
    [Google Scholar]
  48. Zhang Y., Lathigra R., Garbe T., Catty D., Young D. 1991; Genetic analysis of superoxide dismutase, the 23 kilodalton antigen of Mycobacterium tuberculosis . Mol Microbiol 5:381–391 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-1999
Loading
/content/journal/micro/10.1099/00221287-148-7-1999
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error