1887
Preview this article:
Zoom in
Zoomout

Novel pathways for biosynthesis of nucleotide-activated heptose precursors of bacterial glycoproteins and cell surface polysaccharides, Page 1 of 1

| /docserver/preview/fulltext/micro/148/7/1481979a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-1979
2002-07-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1481979a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-1979&mimeType=html&fmt=ahah

References

  1. Argiriadi M. A., Morisseau C., Goodrow M. H., Dowdy D. L., Hammock B. D., Christianson D. W. 2000; Binding of alkylurea inhibitors to epoxide hydrolase implicates active site tyrosines in substrate activation. J Biol Chem275:15265–15270[CrossRef]
    [Google Scholar]
  2. Aspinall G. O., Monteiro M. A., Shaver R. T., Kurjanczyk L. A., Penner J. L. 1997; Lipopolysaccharides of Helicobacter pylori serogroups O: 3 and O:6. Eur J Biochem248:592–601[CrossRef]
    [Google Scholar]
  3. Bateman A. 1999; The SIS domain: a phosphosugar-binding domain. Trends Biochem Sci24:94–95[CrossRef]
    [Google Scholar]
  4. Bayer M. E., Koplow J., Goldfine H. 1975; Alterations in envelope structure of heptose-deficient mutants of Escherichia coli as revealed by freeze-etching. Proc Natl Acad Sci USA72:5145–5149[CrossRef]
    [Google Scholar]
  5. Benz I., Schmidt M. A. 2001; Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol Microbiol40:1403–1413[CrossRef]
    [Google Scholar]
  6. Bork P., Sander C., Valencia A. 1993; Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci2:31–40
    [Google Scholar]
  7. Bork P., Holm L., Koonin E. V., Sander C. 1995; The cytidylyltransferase superfamily: identification of the nucleotide-binding site and fold prediction. Proteins22:259–266[CrossRef]
    [Google Scholar]
  8. Brooke J. S. 1996; Characterization of a phosphoheptose isomerase involved in inner core lipopolysaccharide biosynthesis PhD Dissertation University of Western Ontario;
    [Google Scholar]
  9. Brooke J. S., Valvano M. A. 1996a; Molecular cloning of the Haemophilus influenzae gmhA ( lpcA ) gene encoding a phosphoheptose isomerase required for lipooligosaccharide biosynthesis. J Bacteriol178:3339–3341
    [Google Scholar]
  10. Brooke J. S., Valvano M. A. 1996b; Biosynthesis of inner core lipopolysaccharide in enteric bacteria identification and characterization of a conserved phosphoheptose isomerase. J Biol Chem271:3608–3614[CrossRef]
    [Google Scholar]
  11. Burtnick M. N., Woods D. E. 1999; Isolation of polymyxin B-susceptible mutants of Burkholderia pseudomallei and molecular characterization of genetic loci involved in polymyxin B resistance. Antimicrob Agents Chemother43:2648–2656
    [Google Scholar]
  12. Coleman W. G. Jr. 1983; The rfaD gene codes for ADP-l-glycero-d-mannoheptose-6-epimerase. An enzyme required for lipopolysaccharide core biosynthesis. J Biol Chem258:1985–1990
    [Google Scholar]
  13. Collet J.-F., Stroobant V., Pirard M., Delpierre G., Van Schaftingen E. 1998; A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J Biol Chem273:14107–14112[CrossRef]
    [Google Scholar]
  14. Curtiss R., Charamella J., Stallions D. R., Mays J. A. 1968; Parental functions during conjugation. Bacteriol Rev32:320–348
    [Google Scholar]
  15. Czaja J., Jachymek W., Niedzela T., Lugowski C., Aldova E., Kenne L. 2000; Structural studies of the O-specific polysaccharide from Plesiomonas shigelloides strain CNCTC 113/92. Eur J Biochem267:1672–1679[CrossRef]
    [Google Scholar]
  16. Deacon A. M., Ni Y. S., Coleman W. G. Jr, Ealick S. E. 2000; The crystal structure of ADP-l-glycero-d-mannoheptose 6-epimerase: catalysis with a twist. Structure8:453–462[CrossRef]
    [Google Scholar]
  17. DeShazer D., Waag D. M., Fritz D. L., Woods D. E. 2001; Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant. Microb Pathog30:253–269[CrossRef]
    [Google Scholar]
  18. Dorrell N., Mangan J. A., Laing K. G.. 9 other authors 2001; Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res11:1706–1715[CrossRef]
    [Google Scholar]
  19. Eidels L., Osborn M. J. 1971; Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella typhimurium . Proc Natl Acad Sci USA68:1673–1677[CrossRef]
    [Google Scholar]
  20. Eidels L., Osborn M. J. 1974; Phosphoheptose isomerase, first enzyme in the biosynthesis of aldoheptose in Salmonella typhimurium . J Biol Chem249:5642–5648
    [Google Scholar]
  21. Eidels L., Rick P. D., Stimler N. P., Osborn M. J. 1974; Transport of d-arabinose-5-phosphate and d-sedoheptulose-7-phosphate by the hexose phosphate transport system of Salmonella typhimurium . J Bacteriol119:138–143
    [Google Scholar]
  22. Ferguson A. D., Welte W., Hofmann E., Lindner B., Holst O., Coulton J. W., Diederichs K. 2000; A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins. Structure Fold Des8:585–592[CrossRef]
    [Google Scholar]
  23. Fralick J. A., Burns-Keliher L. L. 1994; Additive effect of tolC and rfa mutations on the hydrophobic barrier of the outer membrane of Escherichia coli K-12. J Bacteriol176:6404–6406
    [Google Scholar]
  24. Freter A., Bowien O. 1994; Identification of a novel gene, aut , involved in autotrophic growth of Alcaligenes eutrophus . J Bacteriol176:5401–5408
    [Google Scholar]
  25. Golinelli-Pimpaneau B., Le Goffic F., Badet B. 1989; Glucosamine-6-phosphate from Escherichia coli : mechanism of the reaction at the fructose-6-phosphate binding site. J Am Chem Soc111:3029–3034[CrossRef]
    [Google Scholar]
  26. Gronow S., Oertelt C., Ervelä E., Zamyatina A., Kosma P., Skurnik M., Holst O. 2001; Characterization of the physiological substrate for lipopolysaccharide heptosyltransferases I and II. J. Endotoxin Res7:263–270[CrossRef]
    [Google Scholar]
  27. Hancock R. E. W., Karunaratne D. N., Bernegger-Egli C. 1994; Molecular organization and structural role of outer membrane macromolecules. In Bacterial Cell Wall pp263–279 Edited by Ghuysen J. M., Hackenbeck R.. Amsterdam & New York: Elsevier;
    [Google Scholar]
  28. Havekes L. M., Lugtenberg B. J. J., Hoekstra W. P. M. 1976; Conjugation deficient E. coli K-12 F- mutants with heptose-less lipopolysaccharide. Mol Gen Genet146:43–50[CrossRef]
    [Google Scholar]
  29. Heinrichs D. E., Valvano M. A., Whitfield C. 1999; Biosynthesis and genetics of lipopolysaccharide core. In Endotoxin in Health and Disease pp305–330 Edited by Brade H., Morrison D. C., Vogel S., Opal S.. New York: Marcel Dekker;
    [Google Scholar]
  30. Helander I. M., Lindner B., Brade H., Altmann K., Lindberg A. A., Rietschel E. T., Zahringer U. 1988; Chemical structure of the lipopolysaccharide of Haemophilus influenzae strain I-69 Rd-/B+: description of a novel deep-rough chemotype. Eur J Biochem177:483–492[CrossRef]
    [Google Scholar]
  31. Hisano T., Hata Y., Fujii T., Liu J.-Q., Kurihara T., Esaki N., Soda K. 1996; Crystal structure of l-2-haloacid dehalogenase from Pseudomonas sp. YL. An α/β hydrolase structure that is different from the α/β hydrolase fold. J Biol Chem271:20322–20330[CrossRef]
    [Google Scholar]
  32. Holst O., Zahringer U., Brade H., Zamojski A. 1991; Structural analysis of the heptose/hexose region of the lipopolysaccharide from Escherichia coli K-12 strain W3100. Carbohydr Res215:323–335[CrossRef]
    [Google Scholar]
  33. Jachymek W., Niedzela T., Petersson C., Lugowski C., Czaja J., Kenne L. 1999; Structures of the O-specific polysaccharides from Yokenella regensburgei ( Koserella trabulsii ) strains PCM 2476, 2477, 2478, and 2494: high-resolution magic angle spinning NMR investigation of the O-specific polysaccharides in native lipopolysaccharides and directly on the surface of living bacteria. Biochemistry38:11788–11795[CrossRef]
    [Google Scholar]
  34. Kadrmas J. L., Brozek K. A., Raetz C. R. H. 1996; Lipopolysaccharide core glycosylation in Rhizobium leguminosarum . An unusual mannosyl transferase resembling the heptosyl transferase I of Escherichia coli . J Biol Chem271:32119–32125[CrossRef]
    [Google Scholar]
  35. Kawahara K., Brade H., Rietschel E. T., Zähringer U. 1987; Studies on the chemical structure of the core-lipid A region of the lipopolysaccharide of Acinetobacter calcoaceticus NCTC 10305. Eur J Biochem163:489–495[CrossRef]
    [Google Scholar]
  36. Kneidinger B., Graninger M., Puchberger M., Kosma P., Messner P. 2001; Biosynthesis of nucleotide-activated d- glycero -d- manno -heptose. J Biol Chem276:20935–20944[CrossRef]
    [Google Scholar]
  37. Kneidinger B., Marolda C. L., Graninger M., Zamyatina A., McArthur F., Kosma P., Valvano M. A., Messner P. 2002; Biosynthesis pathway of ADP-d- glycero -l- manno -heptose in Escherichia coli . J Bacteriol184:363–369[CrossRef]
    [Google Scholar]
  38. Knirel Y. A., Moll H., Zähringer U. 1996; Structural study of a highly O -acetylated core of Legionella pneumophila serogroup 1 lipopolysaccharide. Carbohydr Res293:223–234[CrossRef]
    [Google Scholar]
  39. Kocsis B., Kontrohr T. 1984; Isolation of adenosine 5′-diphosphate-l-glycero-d-mannoheptose, the assumed substrate of heptose transferase(s), from Salmonella minnesota R595 and Shigella sonnei Re mutants. J Biol Chem259:11858–11860
    [Google Scholar]
  40. Koonin E. V., Tatusov R. L. 1994; Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. J Mol Biol244:125–132[CrossRef]
    [Google Scholar]
  41. Koplow J., Goldfine H. 1974; Alterations in the outer membrane of the cell envelope of heptose-deficient mutants of Escherichia coli . J Bacteriol117:527–543
    [Google Scholar]
  42. Koronakis V., Koronakis E., Li J., Stauffer K. 1997; Structure of TolC, the outer membrane component of the bacterial type I efflux system, derived from two-dimensional crystals. Mol Microbiol23:617–626[CrossRef]
    [Google Scholar]
  43. Kosma P., Wugeditsch T., Christian R., Zayni S., Messner P. 1995; Glycan structure of a heptose-containing S-layer glycoprotein of Bacillus thermoaerophilus . Glycobiology5:791–796[CrossRef]
    [Google Scholar]
  44. Melaugh W., Phillips N. J., Campagnari A. A., Karalus R., Gibson B. W. 1992; Partial characterization of the major lipooligosaccharide from a strain of Haemophilus ducreyi , the causative agent of chancroid, a genital ulcer disease. J Biol Chem267:13434–13439
    [Google Scholar]
  45. Messner P., Schäffer C. 2002; Prokaryotic glycoproteins. In Progress in the Chemistry of Organic Natural Compoundsvol. 85 Edited by Herz W., Falk G., Kirby G. W., Moore R. E., Tamm C.. Wien: Springer-Verlag; in press
    [Google Scholar]
  46. Messner P., Sleytr U. B. 1991; Bacterial surface layer glycoproteins. Glycobiology1:545–551[CrossRef]
    [Google Scholar]
  47. Messner P., Sleytr U. B. 1992; Crystalline bacterial cell-surface layers. Adv Microb Physiol33:213–275
    [Google Scholar]
  48. Ni Y., McPhie P., Deacon A., Ealick S. E., Coleman W. G. Jr. 2001; Evidence that NADP+ is the physiological cofactor of ADP-l- glycero -d- manno heptose 6-epimerase. J Biol Chem276:27329–27334[CrossRef]
    [Google Scholar]
  49. Nikaido H. 1994; Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science264:382–388[CrossRef]
    [Google Scholar]
  50. Nikaido H., Vaara M. 1985; Molecular basis of bacterial outer membrane permeability. Microbiol Rev49:1–32
    [Google Scholar]
  51. Pegues J. C., Chen L. S., Gordon A. W., Ding L., Coleman W. G. Jr. 1990; Cloning, expression, and characterization of the Escherichia coli K-12 rfaD gene. J Bacteriol172:4652–4660
    [Google Scholar]
  52. Penner J. L., Aspinall G. O. 1997; Diversity of lipopolysaccharide structures in Campylobacter jejuni . J Infect Dis176 :Suppl. 2S135–S138
    [Google Scholar]
  53. Raetz C. R. H. others 1996; Bacterial lipopolysaccharides: a remarkable family of bioactive molecules. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp1035–1063 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  54. Reckseidler S. L., DeShazer D., Sokol P. A., Woods D. E. 2001; Detection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect Immun69:34–44[CrossRef]
    [Google Scholar]
  55. Reeves P. R., Hobbs M., Valvano M. A.. 8 other authors 1996; Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol4:495–503[CrossRef]
    [Google Scholar]
  56. Regue M., Climent N., Abitiu N., Coderch N., Merino S., Izquierdo L., Altarriba M., Tomas J. M. 2001; Genetic characterization of the Klebsiella pneumoniae waa gene cluster, involved in core lipopolysaccharide biosynthesis. J Bacteriol183:3564–3573[CrossRef]
    [Google Scholar]
  57. Ridder I. S., Rozeboom H. J., Kalk K. H., Janssen D. B., Dijkstra B. W. 1997; Three-dimensional structure of l-2-haloacid dehalogenase from Xanthobacter autotrophicus GJ10 complexed with the substrate-analogue formate. J Biol Chem272:33015–33022[CrossRef]
    [Google Scholar]
  58. Romain F., Horn C., Pescher P., Namane A., Riviere M., Puzo G., Barzu O., Marchal G. 1999; Deglycosylation of the 45/47-kilodalton antigen complex of Mycobacterium tuberculosis decreases its capacity to elicit in vivo or in vitro cellular immune responses. Infect Immun67:5567–5572
    [Google Scholar]
  59. Rossmann M. G., Moras D., Olsen K. W. 1974; Chemical and biological evolution of nucleotide-binding protein. Nature250:194–199[CrossRef]
    [Google Scholar]
  60. Sára M., Sleytr U. B. 2000; S-layer proteins. J Bacteriol182:859–868[CrossRef]
    [Google Scholar]
  61. Schäffer C., Graninger M., Messner P. 2001; Prokaryotic glycosylation. Proteomics1:248–261[CrossRef]
    [Google Scholar]
  62. Sherburne C., Taylor D. E. 1997; Effect of lipopolysaccharide mutations on recipient ability of Salmonella typhimurium for incompatibility group H plasmids. J Bacteriol179:952–955
    [Google Scholar]
  63. Shih G. C., Kahler C. M., Carlson R. l. W., Rahman M. M., Stephens D. S. 2001; gmhX , a novel gene required for the incorporation of l- glycero -d- manno -heptose into lipooligosaccharide in Neisseria meningitidis . Microbiology147:2367–2377
    [Google Scholar]
  64. Sigrell J. A., Cameron A. D., Jones T. A., Mowbray S. L. 1998; Structure of Escherichia coli ribokinase in complex with ribose and dinucleotide determined to 1·8 Å resolution: insights into a new family of kinase structures. Structure6:183–193[CrossRef]
    [Google Scholar]
  65. Sirisena D. M., Brozek K. A., MacLachlan P. R., Sanderson K. E., Raetz C. R. 1992; The rfaC gene of Salmonella typhimurium . Cloning, sequencing, and enzymatic function in heptose transfer to lipopolysaccharide. J Biol Chem267:18874–18884
    [Google Scholar]
  66. Sleytr U. B., Messner P. 2000; Crystalline bacterial cell surface layers (S layers). In Encyclopedia of Microbiology pp899–906 Edited by Lederberg J.. San Diego, CA: Academic Press;
    [Google Scholar]
  67. Sozhamannan S., Deng Y. K., Li M., Sulakvelidze A., Kaper J. B., Johnson J. A., Nair G. B., Morris J. G. Jr. 1999; Cloning and sequencing of the genes downstream of the wbf gene cluster of Vibrio cholerae serogroup O139 and analysis of the junction genes in other serogroups. Infect Immun67:5033–5040
    [Google Scholar]
  68. Sumper M., Wieland F. T. 1995; Bacterial glycoproteins. In Glycoproteins pp455–473 Edited by Montreuil J., Vliegenthart J. F. G., Schachter H.. Amsterdam: Elsevier;
    [Google Scholar]
  69. Süsskind M., Brade L., Brade H., Holst O. 1998; Identification of a novel heptoglycan of alpha1→2-linked d-glycero-d-manno-heptopyranose. J Biol Chem273:7006–7017[CrossRef]
    [Google Scholar]
  70. Tamaki S., Sato T., Matsuhashi M. 1971; Role of lipopolysaccharides in antibiotic resistance and bacteriophage adsorption of Escherichia coli K-12. J Bacteriol105:968–975
    [Google Scholar]
  71. Teplyakov A., Obmolova G., Badet-Denisot M. A., Badet B., Polikarpov I. 1998; Involvement of the C terminus in intramolecular nitrogen channeling in glucosamine 6-phosphate synthase: evidence from a 1·6 Å crystal structure of the isomerase domain. Structure6:1047–1055[CrossRef]
    [Google Scholar]
  72. Thibault P., Logan S. M., Kelly J. F., Brisson J.-R., Ewing C. P., Trust T. J., Guerry P. 2001; Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J Biol Chem276:34862–34870[CrossRef]
    [Google Scholar]
  73. Vakharia H., Misra R. 1996; A genetic approach for analysing surface-exposed regions of the OmpC protein of Escherichia coli K-12. Mol Microbiol19:881–889[CrossRef]
    [Google Scholar]
  74. Valvano M. A. 1999; Biosynthesis and genetics of ADP-heptose. J Endotoxin Res5:90–95[CrossRef]
    [Google Scholar]
  75. Valvano M. A., Marolda C. L., Bittner M., Glaskin-Clay M., Simon T. L., Klena J. D. 2000; The rfaE gene from Escherichia coli encodes a bifunctional protein involved in the biosynthesis of the lipopolysaccharide core precursor ADP-l- glycero- d- manno -heptose. J Bacteriol182:488–497[CrossRef]
    [Google Scholar]
  76. van Alphen W., Lugtenberg B., Berendsen W. 1976; Heptose-deficient mutants of Escherichia coli K12 deficient in up to three major outer membrane proteins. Mol Gen Genet147:263–269[CrossRef]
    [Google Scholar]
  77. Verkleij A. J., Lugtenberg E. J., Ververgaert P. H. 1976; Freeze etch morphology of outer membrane mutants of Escherichia coli K12. Biochim Biophys Acta426:581–586[CrossRef]
    [Google Scholar]
  78. Walsh A. G., Matewish M. J., Burrows L. L., Monteiro M. A., Perry M. B., Lam J. S. 2000; Lipopolysaccharide core phosphates are required for viability and intrinsic drug resistance in Pseudomonas aeruginosa . Mol Microbiol35:718–727[CrossRef]
    [Google Scholar]
  79. Wang W., Kim R., Jancarik J., Yokota H., Kim S. 2001; Crystal structure of phosphoserine phosphatase from Methanococcus jannaschii , a hyperthermophile, at 1·8 Å resolution. Structure9:65–72[CrossRef]
    [Google Scholar]
  80. Whitfield C., Valvano M. A. 1993; Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv Microb Physiol35:135–246
    [Google Scholar]
  81. Wierenga R. K., Terpstra P., Hol W. G. 1986; Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol187:101–107[CrossRef]
    [Google Scholar]
  82. Wugeditsch T., Zachara N. E., Puchberger M., Kosma P., Gooley A. A., Messner P. 1999; Structural heterogeneity in the core oligosaccharide of the S-layer glycoprotein from Aneurinibacillus thermoaerophilus DSM 10155. Glycobiology9:787–795[CrossRef]
    [Google Scholar]
  83. Yethon J. A., Whitfield C. 2001; Purification and characterization of WaaP from Escherichia coli , a lipopolysaccharide kinase essential for outer membrane stability. J Biol Chem276:5498–5504[CrossRef]
    [Google Scholar]
  84. Yethon J. A., Vinogradov E., Perry M. B., Whitfield C. 2000; Mutation of the lipopolysaccharide core glycosyltransferase encoded by waaG destabilizes the outer membrane of Escherichia coli by interfering with core phosphorylation. J Bacteriol182:5620–5623[CrossRef]
    [Google Scholar]
  85. Zamyatina A., Gronow S., Oertelt C., Puchberger M., Brade H., Kosma P. 2000; Efficient chemical synthesis of the two anomers of ADP-l-glycero- and d-glycero-d-manno-heptopyranose allows the determination of substrate specificities of bacterial heptosyltransferases. Angew Chem Int Ed39:4150–4153[CrossRef]
    [Google Scholar]
  86. Zhou T., Daugherty M., Grishin N. V., Osterman A. L., Zhang H. 2000; Structure and mechanism of homoserine kinase: prototype for the GHMP kinase superfamily. Structure8:1247–1257[CrossRef]
    [Google Scholar]
  87. Zwahlen A., Rubin L. G., Connelly C. J., Inzana T. J., Moxon E. R. 1985; Alteration of the cell wall in Haemophilus influenzae type b by transformation with cloned DNA: association with attenuated virulence. J Infect Dis152:485–492[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-1979
Loading
/content/journal/micro/10.1099/00221287-148-7-1979
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error