Assessment of the pathogenic potential of two human faecal carriage isolates

The GenBank accession number for the sequence reported in this paper is AF468816.

Free

Abstract

Two human faeces carriage isolates of (H1 and H2) were compared to reference strains (ScottA and LO28) with regard to their lethality in 14-day-old chick embryos, their haemolytic and phospholipase (phosphatidylcholine-phospholipase C and phosphatidylinositol-phospholipase C) activities and their invasiveness towards Caco-2 cells. Experimental infection of chick embryos allowed discrimination of the strains into those exhibiting high virulence (ScottA and H2), those exhibiting slightly attenuated virulence (LO28) and those exhibiting low virulence (H1). A similar percentage mortality and time to death for embryos was observed when they were infected with H2 as was seen with infection by the reference strain ScottA. Therefore, human carriage strain H2 was considered potentially pathogenic. In contrast to H2 and ScottA, H1 exhibited low virulence. Using the tissue-culture cell-line model, it was found that carriage strain H1 was unable to enter Caco-2 cells efficiently, even though it was similar to the virulent strains in terms of the enzymic activities involved in pathogenicity. Detection of the internalins InlA and InlB, involved in the internalization of in the host cells, by immunoblot indicated that a truncated form of InlA was produced by H1. Taken together, these data provide a starting point for the study of the behaviour of two types of human faeces carriage strains and their characterization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1855
2002-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481855a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1855&mimeType=html&fmt=ahah

References

  1. Barbour A. H., Rampling A., Hormaeche C. E. 2001; Variation in the infectivity of Listeria monocytogenes isolates following intragastric inoculation of mice. Infect Immun 69:4657–4660 [CrossRef]
    [Google Scholar]
  2. Braun L., Cossart P. 2000; Interactions between Listeria monocytogenes and host mammalian cells. Microbes Infect 2:803–811 [CrossRef]
    [Google Scholar]
  3. Braun L., Dramsi S., Dehoux P., Bierne H., Lindahl G., Cossart P. 1997; InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol Microbiol 25:285–294 [CrossRef]
    [Google Scholar]
  4. Braun L., Nato F., Payrastre B., Mazie J. C., Cossart P. 1999; The 213-amino-acid leucine-rich repeat region of the Listeria monocytogenes InlB protein is sufficient for entry into mammalian cells, stimulation of PI 3-kinase and membrane ruffling. Mol Microbiol 34:10–23 [CrossRef]
    [Google Scholar]
  5. Brosch R., Catimel B., Milon G., Buchrieser E., Vindel E., Rocourt J. 1993; Virulence heterogeneity of Listeria monocytogenes strains from various sources (food, human, animal) in immunocompetent mice and its association with typing characteristics. J Food Protect 56:296–301
    [Google Scholar]
  6. Buncic S., Avery S. M. 1996; Relationship between variations in pathogenicity and lag phase at 37 °C of Listeria monocytogenes previously stored at 4 °C. Lett Appl Microbiol 23:18–22 [CrossRef]
    [Google Scholar]
  7. Cebra J. J. 1999; Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69:1046S–1051S
    [Google Scholar]
  8. Chakraborty T., Ebel F., Wehland J., Dufrenne J., Notermans S. 1994; Naturally occurring virulence-attenuated isolates of Listeria monocytogenes capable of inducing long term protection against infection by virulent strains of homologous and heterologous serotypes. FEMS Immunol Med Microbiol 10:1–9 [CrossRef]
    [Google Scholar]
  9. Coffey A., Rombouts F. M., Abee T. 1996; Influence of environmental parameters on phosphatidylcholine phospholipase C production in Listeria monocytogenes : a convenient method to differentiate L. monocytogenes from other Listeria species. Appl Environ Microbiol 62:1252–1256
    [Google Scholar]
  10. Cotter P. D., Gahan C. G. M., Hill C. 2001; A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluids. Mol Microbiol 40:465–475 [CrossRef]
    [Google Scholar]
  11. Del Corral F., Buchanan R. L., Bencivengo M. M., Cooke P. H. 1990; Quantitative comparison of selected virulence associated characteristics in food and clinical isolates of Listeria . J Food Protect 53:1003–1009
    [Google Scholar]
  12. Dramsi S., Biswas I., Maguin E., Braun L., Mastroeni P., Cossart P. 1995; Entry of Listeria monocytogenes into hepatocytes requires expression of inlB , a surface protein of the internalin multigene family. Mol Microbiol 16:251–261 [CrossRef]
    [Google Scholar]
  13. Durst J., Zimanyi M. 1976; Listeria monocytogenes – trägertum von an geburtshilflichen arbeitlungen tätigen in epidemiefreien perioden. Zentbl Bakteriol (Orig A 234:281–283
    [Google Scholar]
  14. Fujisawa T., Mori M. 1994; Evaluation of media for determining hemolytic activity and that of API Listeria system for identifying strains of Listeria monocytogenes . J Clin Microbiol 32:1127–1129
    [Google Scholar]
  15. Gaillard J. L., Berche P., Mounier J., Richard S., Sansonetti P. 1987; In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun 55:2822–2829
    [Google Scholar]
  16. Gaillard J. L., Berche P., Frehel C., Gouin E., Cossart P. 1991; Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65:1127–1141 [CrossRef]
    [Google Scholar]
  17. Goulet V., Lepoutre A., Rocourt J., Courtieu P., Dehaumont P., Veit P. 1993; Epidémie de listériose en France. Bilan final et résultats de l’enquête épidémiologique. Bull Epidémiol Hebdom 4:13–14
    [Google Scholar]
  18. Jonquières R., Bierne H., Mengaud J., Cossart P. 1998; The inlA gene of Listeria monocytogenes LO28 harbors a nonsense mutation resulting in release of internalin. Infect Immun 66:3420–3422
    [Google Scholar]
  19. Kampelmacher E. H., van Noorle Jansen L. M. 1972; Über die isolierung von L. monocytogenes bei klinisch gesunden personen. Zentbl Bakteriol (Orig A) 221:70–77
    [Google Scholar]
  20. Kelly J., Barnass S., Sawicka E., Dean A. 1999; Listeria meningitis presenting in an immunocompetent adult patient. Hosp Med 60:140–141 [CrossRef]
    [Google Scholar]
  21. Kocks C., Gouin E., Tabouret M., Berche P., Ohayon H., Cossart P. 1992; L. monocytogenes -induced actin assembly requires the actA gene product, a surface protein. Cell 68:521–531 [CrossRef]
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of a structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  23. Lecuit M., Ohayon H., Braun L., Mengaud J., Cossart P. 1997; Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect Immun 65:5309–5319
    [Google Scholar]
  24. Lecuit M., Dramsi S., Gottardi C., Fedor-Chaiken M., Gumbiner B., Cossart P. 1999; A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes . EMBO J 18:3956–3963 [CrossRef]
    [Google Scholar]
  25. Manohar M., Baumann D. O., Bos N. A., Cebra J. J. 2001; Gut colonization of mice with actA -negative mutant of Listeria monocytogenes can stimulate a humoral mucosal immune response. Infect Immun 69:3542–3549 [CrossRef]
    [Google Scholar]
  26. Mengaud J., Lecuit M., Lebrun M., Nato F., Mazie J. C., Cossart P. 1996a; Antibodies to the leucine-rich repeat region of internalin block entry of Listeria monocytogenes into cells expressing E-cadherin. Infect Immun 64:5430–5433
    [Google Scholar]
  27. Mengaud J., Ohayon H., Gounon P., Mege R. M., Cossart P. 1996b; E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–932 [CrossRef]
    [Google Scholar]
  28. Norrung B., Andersen J. K. 2000; Variations in virulence between different electrophoretic types of Listeria monocytogenes . Lett Appl Microbiol 30:228–232 [CrossRef]
    [Google Scholar]
  29. Notermans S. H., Dufrenne J., Leimeister-Wachter M., Domann E., Chakraborty T. 1991; Phosphatidylinositol-specific phospholipase C activity as a marker to distinguish between pathogenic and nonpathogenic Listeria species. Appl Environ Microbiol 57:2666–2670
    [Google Scholar]
  30. Notermans S. H., Dufrenne J., Teunis P., Chakraborty T. 1998; Studies on the risk assessment of Listeria monocytogenes . J Food Protein 61:244–248
    [Google Scholar]
  31. Rocourt J., Jacquet C., Reilly A. 2000; Epidemiology of human listeriosis and seafoods. Int J Food Microbiol 62:197–209 [CrossRef]
    [Google Scholar]
  32. Rousset A., Lemaı̃tre J. P., Delcourt A. 1994; Recherche de Listeria monocytogenes au niveau de différents sites (selles, sécrétions génitales et rhino-pharyngés). Med Mal Infect1174–1179
    [Google Scholar]
  33. Ryser E. T. S., Marth E. H. 1999 Listeria, Listeriosis and Food Safety, 2nd edn. New York, NY: Marcel Dekker;
    [Google Scholar]
  34. Santiago N. I., Zipf A., Bhunia A. K. 1999; Influence of temperature and growth phase on expression of a 104-kilodalton Listeria adhesion protein in Listeria monocytogenes . Appl Environ Microbiol 65:2765–2769
    [Google Scholar]
  35. Schlech W. F.III. 1984; New perspectives on the gastrointestinal mode of transmission in invasive Listeria monocytogenes infection. Clin Invest Med 7:321–324
    [Google Scholar]
  36. Schlech W. F. III, Lavigne P. M., Bortolussi R. A. 8 other authors 1983; Epidemic listeriosis – evidence for transmission by food. N Engl J Med 308:203–206 [CrossRef]
    [Google Scholar]
  37. Schuchat A., Deaver K., Hayes P. S., Graves L., Mascola L., Wenger J. D. 1993; Gastrointestinal carriage of Listeria monocytogenes in household contacts of patients with listeriosis. J Infect Dis 167:1261–1262 [CrossRef]
    [Google Scholar]
  38. Terplan G., Steinmeyer S. 1989; Investigations on the pathogenicity of Listeria spp. by experimental infection of the chick embryo. Int J Food Microbiol 8:277–280 [CrossRef]
    [Google Scholar]
  39. Van Langendonck N., Bottreau E., Bailly S., Tabouret M., Marly J., Pardon P., Velge P. 1998; Tissue culture assays using Caco-2 cell line differentiate virulent from non-virulent Listeria monocytogenes strains. J Appl Microbiol 85:337–346 [CrossRef]
    [Google Scholar]
  40. Wiedmann M., Bruce J. L., Keating C., Johnson A. E., McDonough P. L., Batt C. A. 1997; Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun 65:2707–2716
    [Google Scholar]
  41. Zachar Z., Savage D. C. 1979; Microbial interference and colonization of the murine gastrointestinal tract by Listeria monocytogenes . Infect Immun 23:168–174
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-6-1855
Loading
/content/journal/micro/10.1099/00221287-148-6-1855
Loading

Data & Media loading...

Most cited Most Cited RSS feed