1887

Abstract

The leader is a determinant of extreme mRNA stability. The authors examined what properties of the leader confer stability on an mRNA. The secondary structure of the leader mRNA was analysed and , and mutations were introduced into different domains of an leader– fusion. The half-lives of the corresponding transcripts were determined and β-galactosidase activities were measured. Removal of a stem–loop structure at the 5′ end or diminishing the strength of the RBS reduced the half-lives from more than 25 min to about 5 min. Interfering with translation by abolishing the start codon or creating an early stop codon had no or little effect on mRNA stability. The authors conclude that a 5′ stem–loop and binding of ribosomes are necessary for the stability of leader mRNA. The present results, together with a number of other data, suggest that translation of a . mRNA is generally not important for its stability; the situation seems different in . It is further concluded that the calculated strength of a . RBS cannot be used to predict the stability of the corresponding transcript.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1795
2002-06-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481795a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1795&mimeType=html&fmt=ahah

References

  1. Agaisse, H. & Lereclus, D. ( 1996; ). STAB-SD: a Shine-Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stability. Mol Microbiol 20, 633-643.[CrossRef]
    [Google Scholar]
  2. Allmansberger, R. ( 1996; ). Degradation of the Bacillus subtilis xynA transcript is accelerated in response to stress. Mol Gen Genet 251, 108-112.
    [Google Scholar]
  3. Arnold, T. E., Yu, J. & Belasco, J. G. ( 1998; ). mRNA stabilization by the ompA 5′ untranslated region: two protective elements hinder distinct pathways for mRNA degradation. RNA 4, 319-330.
    [Google Scholar]
  4. Arwert, F. & Venema, G. ( 1973; ). Transformation in Bacillus subtilis: fate of newly introduced transforming DNA. Mol Gen Genet 123, 185-198.[CrossRef]
    [Google Scholar]
  5. Ayer, D. E. & Dynan, W. S. ( 1988; ). Simian virus 40 major late promoter: a novel tripartite structure that includes intragenic sequences. Mol Cell Biol 8, 2021-2033.
    [Google Scholar]
  6. Belasco, J. G. ( 1993; ). mRNA degradation in prokayotic cells: an overview. In Control of Messenger RNA Stability , pp. 31-52. Edited by J. G. Belasco & G. Brawerman. San Diego, CA:Academic Press.
  7. Belasco, J. G. & Brawerman, G. ( 1993; ). Experimental approaches to the study of mRNA decay. In Control of Messenger RNA Stability , pp. 475-493. Edited by J. G. Belasco & G. Brawerman. San Diego, CA:Academic Press.
  8. Bullock, W. O., Fernandez, J. M. & Short, J. M. ( 1987; ). XL1-Blue: a high efficiency plasmid transforming RecA Escherichia coli strain with beta-galactosidase selection. Biotechniques 5, 376-378.
    [Google Scholar]
  9. Cohen, S. N. & McDowall, K. J. ( 1997; ). RNase E: still a wonderfully mysterious enzyme. Mol Microbiol 23, 1099-1106.[CrossRef]
    [Google Scholar]
  10. Condon, C., Putzer, H., Luo, D. & Grunberg-Manago, M. ( 1997; ). Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent in Escherichia coli. J Mol Biol 268, 235-242.[CrossRef]
    [Google Scholar]
  11. Court, D. ( 1993; ). RNA processing and degradation by RNase III. In Control of Messenger RNA Stability , pp. 71-116. Edited by J. G. Belasco & G. Brawerman. San Diego, CA:Academic Press.
  12. Dahl, M. K. & Meinhof, C. G. ( 1994; ). A series of integrative plasmids for Bacillus subtilis containing unique cloning sites in all three open reading frames for translational lacZ fusions. Gene 145, 151-152.[CrossRef]
    [Google Scholar]
  13. Deana, A., Ehrlich, R. & Reiss, C. ( 1998; ). Silent mutations in the Escherichia coli ompA leader peptide region strongly affect transcription and translation in vivo. Nucleic Acids Res 26, 4778-4782.[CrossRef]
    [Google Scholar]
  14. de Smit, M. H. & van Duin, J. ( 1990; ). Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA 87, 7668-7672.[CrossRef]
    [Google Scholar]
  15. Emory, S. A., Bouvet, P. & Belasco, J. G. ( 1992; ). A 5′-terminal stem-loop structure can stabilize mRNA in Escherichia coli. Genes Dev 6, 135-148.[CrossRef]
    [Google Scholar]
  16. Ferrari, E., Henner, D. J., Perego, M. & Hoch, J. A. ( 1988; ). Transcription of Bacillus subtilis subtilisin and expression of subtilisin in sporulation mutants. J Bacteriol 170, 289-295.
    [Google Scholar]
  17. Ghosh, S. & Deutscher, M. P. ( 1999; ). Oligoribonuclease is an essential component of the mRNA decay pathway. Proc Natl Acad Sci USA 96, 4372-4377.[CrossRef]
    [Google Scholar]
  18. Glatz, E., Nilsson, R.-P., Rutberg, L. & Rutberg, B. ( 1996; ). A dual role for the Bacillus subtilis glpD leader and the GlpP protein in the regulated expression of glpD: antitermination and control of mRNA stability. Mol Microbiol 19, 319-328.[CrossRef]
    [Google Scholar]
  19. Glatz, E., Persson, M. & Rutberg, B. ( 1998; ). Antiterminator protein GlpP of Bacillus subtilis binds to glpD leader mRNA. Microbiology 144, 449-456.[CrossRef]
    [Google Scholar]
  20. Graumann, P., Wendrich, T. M., Weber, M. H., Schroder, K. & Marahiel, M. A. ( 1997; ). A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol 25, 741-756.[CrossRef]
    [Google Scholar]
  21. Grunberg-Manago, M. ( 1999; ). Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 33, 193-227.[CrossRef]
    [Google Scholar]
  22. Hambraeus, G., Persson, M. & Rutberg, B. ( 2000; ). The aprE leader is a determinant of extreme mRNA stability in Bacillus subtilis. Microbiology 146, 3051-3059.
    [Google Scholar]
  23. Homuth, G., Mogk, A. & Schumann, W. ( 1999; ). Post-transcriptional regulation of the Bacillus subtilis dnaK operon. Mol Microbiol 32, 1183-1197.[CrossRef]
    [Google Scholar]
  24. Hue, K. K., Cohen, S. D. & Bechhofer, D. H. ( 1995; ). A polypurine sequence that acts as a 5′ mRNA stabilizer in Bacillus subtilis. J Bacteriol 177, 3465-3471.
    [Google Scholar]
  25. Joyce, S. A. & Dreyfus, M. ( 1998; ). In the absence of translation, RNase E can bypass 5′ mRNA stabilizers in Escherichia coli. J Mol Biol 282, 241-254.[CrossRef]
    [Google Scholar]
  26. Jürgen, B., Schweder, T. & Hecker, M. ( 1998; ). The stability of mRNA from the gsiB gene of Bacillus subtilis is dependent on the presence of a strong ribosome binding site. Mol Gen Genet 258, 538-545.[CrossRef]
    [Google Scholar]
  27. Kaan, T., Jürgen, B. & Schweder, T. ( 1999; ). Regulation of the expression of the cold shock proteins CspB and CspC in Bacillus subtilis. Mol Gen Genet 262, 351-354.[CrossRef]
    [Google Scholar]
  28. Kunst, F., Ogasawara, N., Moszer, I. & 149 other authors ( 1997; ). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  29. Mackie, G. A. ( 2000; ). Stabilization of circular rpsT mRNA demonstrates the 5′-end dependence of RNase E action in vivo. J Biol Chem 275, 25069-25072.[CrossRef]
    [Google Scholar]
  30. Mandel, M. & Higa, A. ( 1970; ). Calcium-dependent bacteriophage DNA infection. J Mol Biol 53, 159-162.[CrossRef]
    [Google Scholar]
  31. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. ( 1999; ). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288, 911-940.[CrossRef]
    [Google Scholar]
  32. Mayford, M. & Weisblum, B. ( 1989; ). Conformational alterations in the ermC transcript in vivo during induction. EMBO J 8, 4307-4314.
    [Google Scholar]
  33. Melin, L., Rutberg, L. & von Gabain, A. ( 1989; ). Transcriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon. J Bacteriol 171, 2110-2115.
    [Google Scholar]
  34. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Nilsson, G., Belasco, J. G., Cohen, S. N. & von Gabain, A. ( 1987; ). Effect of premature termination of translation on mRNA stability depends on the site of ribosome release. Proc Natl Acad Sci USA 84, 4890-4894.[CrossRef]
    [Google Scholar]
  36. Nogueira, T., de Smit, M., Graffe, M. & Springer, M. ( 2001; ). The relationship between translational control and mRNA degradation for the Escherichia coli threonyl-tRNA synthetase gene. J Mol Biol 310, 709-722.[CrossRef]
    [Google Scholar]
  37. Paesold, G. & Krause, M. ( 1999; ). Analysis of rpoS mRNA in Salmonella dublin: identification of multiple transcripts with growth-phase-dependent variation in transcript stability. J Bacteriol 181, 1264-1268.
    [Google Scholar]
  38. Pereira, Y., Chambert, R., Leloup, L., Daguer, J. P. & Petit-Glatron, M. F. ( 2001; ). Transcripts of the genes sacB, amyE, sacC and csn expressed in Bacillus subtilis under the control of the 5′ untranslated sacR region display different stabilities that can be modulated. Microbiology 147, 1331-1341.
    [Google Scholar]
  39. Persson, M., Glatz, E. & Rutberg, B. ( 2000; ). Different processing of an mRNA species in Bacillus subtilis and Escherichia coli. J Bacteriol 182, 689-695.[CrossRef]
    [Google Scholar]
  40. Putzer, H., Gendron, N. & Grunberg-Manago, M. ( 1992; ). Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis: control by transcriptional antitermination involving a conserved regulatory sequence. EMBO J 11, 3117-3127.
    [Google Scholar]
  41. Rauhut, R. & Klug, G. ( 1999; ). mRNA degradation in bacteria. FEMS Microbiol Rev 23, 353-370.[CrossRef]
    [Google Scholar]
  42. Régnier, P. & Grunberg-Manago, M. ( 1990; ). RNase III cleavages in non-coding leaders of Escherichia coli transcripts control mRNA stability and genetic expression. Biochimie 72, 825-834.[CrossRef]
    [Google Scholar]
  43. Resnekov, O., Rutberg, L. & von Gabain, A. ( 1990; ). Changes in the stability of specific mRNA species in response to growth stage in Bacillus subtilis. Proc Natl Acad Sci USA 87, 8355-8359.[CrossRef]
    [Google Scholar]
  44. Resnekov, O., Melin, L., Carlsson, P., Mannerlov, M., von Gabain, A. & Hederstedt, L. ( 1992; ). Organization and regulation of the Bacillus subtilis odhAB operon, which encodes two of the subenzymes of the 2-oxoglutarate dehydrogenase complex. Mol Gen Genet 234, 285-296.[CrossRef]
    [Google Scholar]
  45. Sandler, P. & Weisblum, B. ( 1989; ). Erythromycin-induced ribosome stall in the ermA leader: a barricade to 5′-to-3′ nucleolytic cleavage of the ermA transcript. J Bacteriol 171, 6680-6688.
    [Google Scholar]
  46. Spickler, C. & Mackie, G. A. ( 2000; ). Action of RNase II and polynucleotide phosphorylase against RNAs containing stem-loops of defined structure J Bacteriol 182, 2422-2427.[CrossRef]
    [Google Scholar]
  47. Strauch, M. A. & Hoch, J. A. ( 1993; ). Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol 7, 337-342.[CrossRef]
    [Google Scholar]
  48. Thomas, P. S. ( 1980; ). Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77, 5201-5205.[CrossRef]
    [Google Scholar]
  49. Vytvytska, O., Jakobsen, J. S., Balcunaite, G., Andersen, J. S., Baccarini, M. & von Gabain, A. ( 1998; ). Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability. Proc Natl Acad Sci USA 95, 14118-14123.[CrossRef]
    [Google Scholar]
  50. Wagner, L. A., Gesteland, R. F., Dayhuff, T. J. & Weiss, R. B. ( 1994; ). An efficient Shine-Dalgarno sequence but not translation is necessary for lacZ mRNA stability in Escherichia coli. J Bacteriol 176, 1683-1688.
    [Google Scholar]
  51. Yuan, G. & Wong, S. L. ( 1995; ). Regulation of groE expression in Bacillus subtilis: the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE). J Bacteriol 177, 5427-5433.
    [Google Scholar]
  52. Zuker, M., Mathews, D. H. & Turner, D. H. (1999). Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In RNA Biochemistry and Biotechnology, pp. 11–43. NATO ASI Series, High Technology, vol. 70. Edited by J. Barciszewski & B. F. C. Clark. Dordrecht: Kluwer.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-6-1795
Loading
/content/journal/micro/10.1099/00221287-148-6-1795
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error