1887

Abstract

The leader is a determinant of extreme mRNA stability. The authors examined what properties of the leader confer stability on an mRNA. The secondary structure of the leader mRNA was analysed and , and mutations were introduced into different domains of an leader– fusion. The half-lives of the corresponding transcripts were determined and β-galactosidase activities were measured. Removal of a stem–loop structure at the 5′ end or diminishing the strength of the RBS reduced the half-lives from more than 25 min to about 5 min. Interfering with translation by abolishing the start codon or creating an early stop codon had no or little effect on mRNA stability. The authors conclude that a 5′ stem–loop and binding of ribosomes are necessary for the stability of leader mRNA. The present results, together with a number of other data, suggest that translation of a . mRNA is generally not important for its stability; the situation seems different in . It is further concluded that the calculated strength of a . RBS cannot be used to predict the stability of the corresponding transcript.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1795
2002-06-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481795a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1795&mimeType=html&fmt=ahah

References

  1. Agaisse H., Lereclus D. 1996; STAB-SD: a Shine-Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stability. Mol Microbiol20:633–643[CrossRef]
    [Google Scholar]
  2. Allmansberger R. 1996; Degradation of the Bacillus subtilis xynA transcript is accelerated in response to stress. Mol Gen Genet251:108–112
    [Google Scholar]
  3. Arnold T. E., Yu J., Belasco J. G. 1998; mRNA stabilization by the ompA 5′ untranslated region: two protective elements hinder distinct pathways for mRNA degradation. RNA4:319–330
    [Google Scholar]
  4. Arwert F., Venema G. 1973; Transformation in Bacillus subtilis : fate of newly introduced transforming DNA. Mol Gen Genet123:185–198[CrossRef]
    [Google Scholar]
  5. Ayer D. E., Dynan W. S. 1988; Simian virus 40 major late promoter: a novel tripartite structure that includes intragenic sequences. Mol Cell Biol8:2021–2033
    [Google Scholar]
  6. Belasco J. G. 1993; mRNA degradation in prokayotic cells: an overview. In Control of Messenger RNA Stability pp31–52 Edited by Belasco J. G., Brawerman G.. San Diego, CA: Academic Press;
    [Google Scholar]
  7. Belasco J. G., Brawerman G. 1993; Experimental approaches to the study of mRNA decay. In Control of Messenger RNA Stability pp475–493 Edited by Belasco J. G., Brawerman G.. San Diego, CA: Academic Press;
    [Google Scholar]
  8. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL1-Blue: a high efficiency plasmid transforming RecA Escherichia coli strain with beta-galactosidase selection. Biotechniques5:376–378
    [Google Scholar]
  9. Cohen S. N., McDowall K. J. 1997; RNase E: still a wonderfully mysterious enzyme. Mol Microbiol23:1099–1106[CrossRef]
    [Google Scholar]
  10. Condon C., Putzer H., Luo D., Grunberg-Manago M. 1997; Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent in Escherichia coli . J Mol Biol268:235–242[CrossRef]
    [Google Scholar]
  11. Court D. 1993; RNA processing and degradation by RNase III. In Control of Messenger RNA Stability pp71–116 Edited by Belasco J. G., Brawerman G.. San Diego, CA: Academic Press;
    [Google Scholar]
  12. Dahl M. K., Meinhof C. G. 1994; A series of integrative plasmids for Bacillus subtilis containing unique cloning sites in all three open reading frames for translational lacZ fusions. Gene145:151–152[CrossRef]
    [Google Scholar]
  13. Deana A., Ehrlich R., Reiss C. 1998; Silent mutations in the Escherichia coli ompA leader peptide region strongly affect transcription and translation in vivo . Nucleic Acids Res26:4778–4782[CrossRef]
    [Google Scholar]
  14. de Smit M. H., van Duin J. 1990; Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA87:7668–7672[CrossRef]
    [Google Scholar]
  15. Emory S. A., Bouvet P., Belasco J. G. 1992; A 5′-terminal stem-loop structure can stabilize mRNA in Escherichia coli . Genes Dev6:135–148[CrossRef]
    [Google Scholar]
  16. Ferrari E., Henner D. J., Perego M., Hoch J. A. 1988; Transcription of Bacillus subtilis subtilisin and expression of subtilisin in sporulation mutants. J Bacteriol170:289–295
    [Google Scholar]
  17. Ghosh S., Deutscher M. P. 1999; Oligoribonuclease is an essential component of the mRNA decay pathway. Proc Natl Acad Sci USA96:4372–4377[CrossRef]
    [Google Scholar]
  18. Glatz E., Nilsson R.-P., Rutberg L., Rutberg B. 1996; A dual role for the Bacillus subtilis glpD leader and the GlpP protein in the regulated expression of glpD : antitermination and control of mRNA stability. Mol Microbiol19:319–328[CrossRef]
    [Google Scholar]
  19. Glatz E., Persson M., Rutberg B. 1998; Antiterminator protein GlpP of Bacillus subtilis binds to glpD leader mRNA. Microbiology144:449–456[CrossRef]
    [Google Scholar]
  20. Graumann P., Wendrich T. M., Weber M. H., Schroder K., Marahiel M. A. 1997; A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol25:741–756[CrossRef]
    [Google Scholar]
  21. Grunberg-Manago M. 1999; Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet33:193–227[CrossRef]
    [Google Scholar]
  22. Hambraeus G., Persson M., Rutberg B. 2000; The aprE leader is a determinant of extreme mRNA stability in Bacillus subtilis . Microbiology146:3051–3059
    [Google Scholar]
  23. Homuth G., Mogk A., Schumann W. 1999; Post-transcriptional regulation of the Bacillus subtilis dnaK operon. Mol Microbiol32:1183–1197[CrossRef]
    [Google Scholar]
  24. Hue K. K., Cohen S. D., Bechhofer D. H. 1995; A polypurine sequence that acts as a 5′ mRNA stabilizer in Bacillus subtilis . J Bacteriol177:3465–3471
    [Google Scholar]
  25. Joyce S. A., Dreyfus M. 1998; In the absence of translation, RNase E can bypass 5′ mRNA stabilizers in Escherichia coli . J Mol Biol282:241–254[CrossRef]
    [Google Scholar]
  26. Jürgen B., Schweder T., Hecker M. 1998; The stability of mRNA from the gsiB gene of Bacillus subtilis is dependent on the presence of a strong ribosome binding site. Mol Gen Genet258:538–545[CrossRef]
    [Google Scholar]
  27. Kaan T., Jürgen B., Schweder T. 1999; Regulation of the expression of the cold shock proteins CspB and CspC in Bacillus subtilis . Mol Gen Genet262:351–354[CrossRef]
    [Google Scholar]
  28. Kunst F., Ogasawara N., Moszer I.. 149 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature390:249–256[CrossRef]
    [Google Scholar]
  29. Mackie G. A. 2000; Stabilization of circular rpsT mRNA demonstrates the 5′-end dependence of RNase E action in vivo . J Biol Chem275:25069–25072[CrossRef]
    [Google Scholar]
  30. Mandel M., Higa A. 1970; Calcium-dependent bacteriophage DNA infection. J Mol Biol53:159–162[CrossRef]
    [Google Scholar]
  31. Mathews D. H., Sabina J., Zuker M., Turner D. H. 1999; Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol288:911–940[CrossRef]
    [Google Scholar]
  32. Mayford M., Weisblum B. 1989; Conformational alterations in the ermC transcript in vivo during induction. EMBO J8:4307–4314
    [Google Scholar]
  33. Melin L., Rutberg L., von Gabain A. 1989; Transcriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon. J Bacteriol171:2110–2115
    [Google Scholar]
  34. Miller J. H. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Nilsson G., Belasco J. G., Cohen S. N., von Gabain A. 1987; Effect of premature termination of translation on mRNA stability depends on the site of ribosome release. Proc Natl Acad Sci USA84:4890–4894[CrossRef]
    [Google Scholar]
  36. Nogueira T., de Smit M., Graffe M., Springer M. 2001; The relationship between translational control and mRNA degradation for the Escherichia coli threonyl-tRNA synthetase gene. J Mol Biol310:709–722[CrossRef]
    [Google Scholar]
  37. Paesold G., Krause M. 1999; Analysis of rpoS mRNA in Salmonella dublin : identification of multiple transcripts with growth-phase-dependent variation in transcript stability. J Bacteriol181:1264–1268
    [Google Scholar]
  38. Pereira Y., Chambert R., Leloup L., Daguer J. P., Petit-Glatron M. F. 2001; Transcripts of the genes sacB , amyE , sacC and csn expressed in Bacillus subtilis under the control of the 5′ untranslated sacR region display different stabilities that can be modulated. Microbiology147:1331–1341
    [Google Scholar]
  39. Persson M., Glatz E., Rutberg B. 2000; Different processing of an mRNA species in Bacillus subtilis and Escherichia coli . J Bacteriol182:689–695[CrossRef]
    [Google Scholar]
  40. Putzer H., Gendron N., Grunberg-Manago M. 1992; Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis : control by transcriptional antitermination involving a conserved regulatory sequence. EMBO J11:3117–3127
    [Google Scholar]
  41. Rauhut R., Klug G. 1999; mRNA degradation in bacteria. FEMS Microbiol Rev23:353–370[CrossRef]
    [Google Scholar]
  42. Régnier P., Grunberg-Manago M. 1990; RNase III cleavages in non-coding leaders of Escherichia coli transcripts control mRNA stability and genetic expression. Biochimie72:825–834[CrossRef]
    [Google Scholar]
  43. Resnekov O., Rutberg L., von Gabain A. 1990; Changes in the stability of specific mRNA species in response to growth stage in Bacillus subtilis . Proc Natl Acad Sci USA87:8355–8359[CrossRef]
    [Google Scholar]
  44. Resnekov O., Melin L., Carlsson P., Mannerlov M., von Gabain A., Hederstedt L. 1992; Organization and regulation of the Bacillus subtilis odhAB operon, which encodes two of the subenzymes of the 2-oxoglutarate dehydrogenase complex. Mol Gen Genet234:285–296[CrossRef]
    [Google Scholar]
  45. Sandler P., Weisblum B. 1989; Erythromycin-induced ribosome stall in the ermA leader: a barricade to 5′-to-3′ nucleolytic cleavage of the ermA transcript. J Bacteriol171:6680–6688
    [Google Scholar]
  46. Spickler C., Mackie G. A. 2000; Action of RNase II and polynucleotide phosphorylase against RNAs containing stem-loops of defined structure. J Bacteriol182:2422–2427[CrossRef]
    [Google Scholar]
  47. Strauch M. A., Hoch J. A. 1993; Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol7:337–342[CrossRef]
    [Google Scholar]
  48. Thomas P. S. 1980; Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA77:5201–5205[CrossRef]
    [Google Scholar]
  49. Vytvytska O., Jakobsen J. S., Balcunaite G., Andersen J. S., Baccarini M., von Gabain A. 1998; Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability. Proc Natl Acad Sci USA95:14118–14123[CrossRef]
    [Google Scholar]
  50. Wagner L. A., Gesteland R. F., Dayhuff T. J., Weiss R. B. 1994; An efficient Shine-Dalgarno sequence but not translation is necessary for lacZ mRNA stability in Escherichia coli . J Bacteriol176:1683–1688
    [Google Scholar]
  51. Yuan G., Wong S. L. 1995; Regulation of groE expression in Bacillus subtilis : the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE. J Bacteriol177:5427–5433
    [Google Scholar]
  52. Zuker M., Mathews D. H., Turner D. H. 1999; Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In RNA Biochemistry and Biotechnology pp11–43NATO ASI Series, High Technologyvol. 70 Edited by Barciszewski J., Clark B. F. C.. Dordrecht: Kluwer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-6-1795
Loading
/content/journal/micro/10.1099/00221287-148-6-1795
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error