1887

Abstract

Type I polyketide synthases (PKSs) are complexes of large, multimodular enzymes that catalyse biosynthesis of polyketide compounds via repetitive reaction sequences, during which each step is catalysed by a separate enzymic domain. Many type I PKSs, and also non-ribosomal peptide synthetase clusters, contain additional thioesterase genes located adjacent to PKS genes. These are discrete proteins called type II thioesterases (TE IIs) to distinguish them from chain-terminating thioesterase (TE I) domains that are usually fused to the terminal PKS module. A gene of a new TE II, , associated with the cluster of putative type I PKS genes from A3(2), was found. The deduced amino acid sequence of the gene product shows extensive similarity to other authentic thioesterase enzymes, including conservation of characteristic motifs and residues involved in catalysis. When expressed in the heterologous host , successfully complemented the resident TE II gene (), and, by restoring a significant level of macrolide production, proved to be catalytically equivalent to the TylO protein. S nuclease mapping of revealed a single potential transcription start point with expression being switched on for a short period of time during a transition phase of growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1777
2002-06-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481777a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1777&mimeType=html&fmt=ahah

References

  1. August, P. R., Tang, L., Yoon, Y. J. & 9 other authors. ( 1998; ). Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol 5, 69–79.[CrossRef]
    [Google Scholar]
  2. Baltz, R. & Seno, E. T. ( 1988; ). Genetics of Streptomyces fradiae and tylosin biosynthesis. Annu Rev Microbiol 42, 547-574.[CrossRef]
    [Google Scholar]
  3. Bierman, M., Logan, R., O’Brien, K., Seno, E. T., Rao, R. N. & Schoner, B. E. ( 1992; ). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43-49.[CrossRef]
    [Google Scholar]
  4. Butler, A. R., Bate, N. & Cundliffe, E. ( 1999; ). Impact of thioesterase activity on tylosin biosynthesis in Streptomyces fradiae. Chem Biol 6, 287-292.[CrossRef]
    [Google Scholar]
  5. Doi-Katayama, Y., Yoon, Y. J., Choi, C.-Y., Yu, T-W., Floss, H. G. & Hutchinson, R. ( 2000; ). Thioesterases and the premature termination of polyketide chain elongation in rifamycin B biosynthesis by Amycolatopsis mediteranei S699. J Antibiot 53, 484-495.[CrossRef]
    [Google Scholar]
  6. Gokhale, R. S., Hunziker, D., Cane, D. E. & Khosla, C. ( 1999; ). Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase. Chem Biol 6, 117-125.[CrossRef]
    [Google Scholar]
  7. Haydock, S. F., Aparicio, J. F., Molnar, I. & 7 other authors ( 1995; ). Divergent sequence motifs correlated with the substrate specificity of (methyl)malonyl-CoA: acyl carrier protein transacylase domains in modular polyketide synthases. FEBS Lett 374, 246–248.[CrossRef]
    [Google Scholar]
  8. Heathcote, M. L., Staunton, J. & Leadlay, P. F. ( 2001; ). Role of type II thioesterases: evidence from removal of short acyl chains produced by aberrant decarboxylation of chain extender units. Chem Biol 8, 207-220.[CrossRef]
    [Google Scholar]
  9. Hopwood, D. A., Bibb, M. J., Chater, K. F. & 7 other authors (1985). Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich: John Innes Foundation.
  10. Hutchinson, C. R. & Fujii, I. ( 1995; ). Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Annu Rev Microbiol 49, 201-238.[CrossRef]
    [Google Scholar]
  11. Katz, L. & Donadio, S. ( 1993; ). Polyketide synthesis: prospects for hybrid antibiotics. Annu Rev Microbiol 47, 875-912.[CrossRef]
    [Google Scholar]
  12. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. (2000). Practical Streptomyces genetics. Norwich: John Innes Foundation.
  13. Kuczek, K., Pawlik, K., Kotowska, M. & Mordarski, M. ( 1997; ). Streptomyces coelicolor DNA homologous with acyltransferase domains of type I polyketide synthase gene complex. FEMS Microbiol Lett 157, 195-200.[CrossRef]
    [Google Scholar]
  14. Kuczek, K., Kotowska, M., Wiernik, D. & Mordarski, M. ( 1998; ). Single-stranded DNA production from phagemids containing GC-rich DNA fragments. BioTechniques 24, 214-215.
    [Google Scholar]
  15. Murray, M. G. ( 1986; ). Use of sodium trichloroacetate and mung bean nuclease to increase sensitivity and precision during transcript mapping. Anal Biochem 158, 165-170.[CrossRef]
    [Google Scholar]
  16. Ranganathan, A., Timoney, M., Bycroft, M. & 8 other authors ( 1999; ). Knowledge-based design of bimodular and trimodular polyketide synthases based on domain and module swaps: a route to simple statin analogues. Chem Biol 6, 731–741.[CrossRef]
    [Google Scholar]
  17. Redenbach, M., Kieser, H. M., Denapaite, D., Eichner, A., Cullum, J., Kinashi, H. & Hopwood, D. A. ( 1996; ). A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21, 77-96.[CrossRef]
    [Google Scholar]
  18. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  19. Schneider, A. & Marahiel, M. A. ( 1998; ). Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch Microbiol 169, 404-410.[CrossRef]
    [Google Scholar]
  20. Seno, E. T. & Baltz, R. H. ( 1982; ). S-Adenosyl-l-methionine:macrocin O-methyl-transferase activities in a series of Streptomyces fradiae mutants that produce different levels of the macrolide antibiotic tylosin. Antimicrob Agents Chemother 21, 758-763.[CrossRef]
    [Google Scholar]
  21. Shaw-Reid, C. A., Kelleher, N. L., Losey, H. C., Gehring, A. M., Berg, C. & Walsh, C. T. ( 1999; ). Assembly line enzymology by multimodulator nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyses both elongation and cyclolactonization. Chem Biol 6, 385-400.[CrossRef]
    [Google Scholar]
  22. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilisation system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1, 784-791.[CrossRef]
    [Google Scholar]
  23. Smith, S. ( 1994; ). The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J 8, 1248-1259.
    [Google Scholar]
  24. Strauch, E., Takano, E., Baylis, H. A. & Bibb, M. J. ( 1991; ). The stringent response in Streptomyces coelicolor A3(2). Mol Microbiol 5, 289-298.[CrossRef]
    [Google Scholar]
  25. Strohl, R. ( 1992; ). Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20, 961-974.[CrossRef]
    [Google Scholar]
  26. Tang, L., Fu, H. & McDaniel, R. ( 2000; ). Formation of functional heterologous complexes using subunits from the picromycin, erythromycin and oleandomycin polyketide synthases. Chem Biol 7, 77-84.[CrossRef]
    [Google Scholar]
  27. Weissman, K. J., Cameron, J. S., Hanefeld, U., Aggarwal, R., Bycroft, M., Staunton, J. & Leadlay, P. F. ( 1998; ). The thioesterase of the erythromycin-producing polyketide synthase: influence of acyl chain structure on the mode of release of substrate analogues from the acyl enzyme intermediates. Chem Int Ed 37, 1437-1440.[CrossRef]
    [Google Scholar]
  28. Wilson, V. T. & Cundliffe, E. ( 1998; ). Characterization and targeted disruption of a glycosyltransferase gene in the tylosin producer, Streptomyces fradiae. Gene 214, 95-100.[CrossRef]
    [Google Scholar]
  29. Xue, Y., Zhao, L., Liu, H. W. & Sherman, D. H. ( 1998; ). A gene cluster for the macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc Natl Acad Sci USA 95, 12111-12116.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-6-1777
Loading
/content/journal/micro/10.1099/00221287-148-6-1777
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error