1887

Abstract

Phosphoinositides are important lipid signalling molecules in eukaryotic cells. Phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) catalyses the production of phosphatidylinositol 4,5-bisphosphate (PIP), which stimulates phospholipase D1 (PLD1) activity in mammalian and yeast cells. PLD1 catalyses the formation of phosphatidic acid (PA), which has been shown to activate PI4P5Ks in mammalian and cells. In the present study, PI4P5K activity in the opportunistic pathogen was identified. A gene with significant sequence homology to the PI4P5K was cloned and designated . This gene was demonstrated to encode a functional PI4P5K by expression in . This enzyme was found to be membrane-associated and was stimulated by PA. Within the first 20 min after induction of polarized hyphal growth induced by a shift to elevated temperature, PI4P5K activity increased 25-fold. This stimulation was not observed when hyphae were induced by a combination of elevated temperature and serum. A lack of PLD1 activity resulted in the loss of induction of PI4P5K activity during the morphogenetic switch. Furthermore, the addition of propranolol attenuated the stimulation of PI4P5K activity during morphogenesis. These results suggest that PA derived from PLD1 activity stimulates PI4P5K during the switch to the hyphal form under some conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1737
2002-06-01
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481737a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1737&mimeType=html&fmt=ahah

References

  1. Amsterdam A., Dantes A., Liscovitch M. 1994; Role of phospholipase-D and phosphatidic acid in mediating gonadotropin-releasing hormone-induced inhibition of preantral granulosa cell differentiation. Endocrinology135:1205–1211
    [Google Scholar]
  2. Anderson R. A., Boronenkov I. V., Doughman S. D., Kunz J., Loijens J. C. 1999; Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J Biol Chem274:9907–9910[CrossRef]
    [Google Scholar]
  3. Athenstaedt K., Weys S., Paltauf F., Daum G. 1999; Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae . J Bacteriol181:1458–1463
    [Google Scholar]
  4. Audhya A., Foti M., Emr S. D. 2000; Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol Biol Cell11:2673–2689[CrossRef]
    [Google Scholar]
  5. Bligh E. C., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917[CrossRef]
    [Google Scholar]
  6. Chong L. D., Traynor-Kaplan A., Bokoch G. M., Schwartz M. A. 1994; The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell79:507–513[CrossRef]
    [Google Scholar]
  7. Cochet C., Chambaz E. M. 1986; Catalytic properties of a purified phosphatidylinositol-4-phosphate kinase from rat brain. Biochem J237:25–31
    [Google Scholar]
  8. Cutler J. E. 1991; Putative virulence factors of Candida albicans . Annu Rev Microbiol45:187–218[CrossRef]
    [Google Scholar]
  9. Desrivieres S., Cooke F. T., Parker P. J., Hall M. N. 1998; MSS4, a phosphatidylinositol-4-phosphate 5-kinase required for organization of the actin cytoskeleton in Saccharomyces cerevisiae . J Biol Chem273:15787–15793[CrossRef]
    [Google Scholar]
  10. DiNubile M. J., Huang S. 1997a; Capping of the barbed ends of actin filaments by a high-affinity profilin-actin complex. Cell Motil Cytoskeleton37:211–225[CrossRef]
    [Google Scholar]
  11. DiNubile M. J., Huang S. 1997b; High concentrations of phosphatidylinositol-4,5-bisphosphate may promote actin filament growth by three potential mechanisms: inhibiting capping by neutrophil lysates, severing actin filaments and removing capping protein-beta2 from barbed ends. Biochim Biophys Acta1358:261–278[CrossRef]
    [Google Scholar]
  12. Dove S. K., Cooke F. T., Douglas M. R., Sayers L. G., Parker P. J., Michell R. H. 1997; Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature390:187–192[CrossRef]
    [Google Scholar]
  13. Ella K. M., Dolan J. W., Meier K. E. 1995; Characterization of a regulated form of phospholipase D in the yeast Saccharomyces cerevisiae . Biochem J307:799–805
    [Google Scholar]
  14. Ernst J. F. 2000; Regulation of dimorphism in Candida albicans . Contrib Microbiol5:98–111
    [Google Scholar]
  15. Fruman D. A., Meyers R. E., Cantley L. C. 1998; Phosphoinositide kinases. Annu Rev Biochem67:481–507[CrossRef]
    [Google Scholar]
  16. Fukami K., Furuhashi K., Inagaki M., Endo T., Hatano S., Takenawa T. 1992; Requirement of phosphatidylinositol 4,5-bisphosphate for alpha-actinin function. Nature359:150–152[CrossRef]
    [Google Scholar]
  17. Gietz R. D., Woods R. A. 2001; Genetic transformation of yeast. Biotechniques30:816–820 822–826, 828 passim
    [Google Scholar]
  18. Ha K. S., Exton J. H. 1993; Activation of actin polymerization by phosphatidic acid derived from phosphatidylcholine in IIC9 fibroblasts. J Cell Biol123:1789–1796[CrossRef]
    [Google Scholar]
  19. Heiss S. G., Cooper J. A. 1991; Regulation of CapZ, an actin capping protein of chicken muscle, by anionic phospholipids. Biochemistry30:8753–8758[CrossRef]
    [Google Scholar]
  20. Homma K., Terui S., Minemura M., Qadota H., Anraku Y., Kanaho Y., Ohya Y. 1998; Phosphatidylinositol-4-phosphate 5-kinase localized on the plasma membrane is essential for yeast cell morphogenesis. J Biol Chem273:15779–15786[CrossRef]
    [Google Scholar]
  21. Honda A., Nogami M., Yokozeki T.. 8 other authors 1999; Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell99:521–532[CrossRef]
    [Google Scholar]
  22. Hube B., Hess D., Baker C. A., Schaller M., Schafer W., Dolan J. W. 2001; The role and relevance of phospholipase D1 during growth and dimorphism of Candida albicans . Microbiology147:879–889
    [Google Scholar]
  23. Isakoff S. J., Cardozo T., Andreev J., Li Z., Ferguson K. M., Abagyan R., Lemmon M. A., Aronheim A., Skolnik E. Y. 1998; Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J17:5374–5387[CrossRef]
    [Google Scholar]
  24. Ishihara H., Shibasaki Y., Kizuki N., Katagiri H., Yazaki Y., Asano T., Oka Y. 1996; Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem271:23611–23614[CrossRef]
    [Google Scholar]
  25. Ishihara H., Shibasaki Y., Kizuki N., Wada T., Yazaki Y., Asano T., Oka Y. 1998; Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J Biol Chem273:8741–8748[CrossRef]
    [Google Scholar]
  26. Janmey P. A. 1994; Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu Rev Physiol56:169–191[CrossRef]
    [Google Scholar]
  27. Janmey P. A., Stossel T. P. 1987; Modulation of gelsolin function by phosphatidylinositol 4, 5-bisphosphate. Nature325:362–364[CrossRef]
    [Google Scholar]
  28. Janmey P. A., Iida K., Yin H. L., Stossel T. P. 1987; Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin. J Biol Chem262:12228–12236
    [Google Scholar]
  29. Jenkins G. H., Fisette P. L., Anderson R. A. 1994; Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J Biol Chem269:11547–11554
    [Google Scholar]
  30. Kaszkin M., Richards J., Kinzel V. 1996; Phosphatidic acid mobilized by phospholipase D is involved in the phorbol 12-myristate 13-acetate-induced G2 delay of A431 cells. Biochem J314:129–138
    [Google Scholar]
  31. Knighton D. R., Zheng J. H., Ten Eyck L. F., Ashford V. A., Xuong N. H., Taylor S. S., Sowadski J. M. 1991; Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science253:407–414[CrossRef]
    [Google Scholar]
  32. Leberer E., Ziegelbauer K., Schmidt A., Harcus D., Dignard D., Ash J., Johnson L., Thomas D. Y. 1997; Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr Biol7:539–546[CrossRef]
    [Google Scholar]
  33. Liscovitch M., Chalifa V., Pertile P., Chen C. S., Cantley L. C. 1994; Novel function of phosphatidylinositol 4,5-bisphosphate as a cofactor for brain membrane phospholipase D. J Biol Chem269:21403–21406
    [Google Scholar]
  34. Liscovitch M., Czarny M., Fiucci G., Lavie Y., Tang X. 1999; Localization and possible functions of phospholipase D isozymes. Biochim Biophys Acta 1439;245–263[CrossRef]
    [Google Scholar]
  35. Loijens J. C., Anderson R. A. 1996; Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. J Biol Chem271:32937–32943[CrossRef]
    [Google Scholar]
  36. Loijens J. C., Boronenkov I. V., Parker G. J., Anderson R. A. 1996; The phosphatidylinositol 4-phosphate 5-kinase family. Adv Enzyme Regul36:115–140[CrossRef]
    [Google Scholar]
  37. Majerus P. W. 1992; Inositol phosphate biochemistry. Annu Rev Biochem61:225–250[CrossRef]
    [Google Scholar]
  38. McLain N., Dolan J. W. 1997; Phospholipase D activity is required for dimorphic transition in Candida albicans . Microbiology143:3521–3526[CrossRef]
    [Google Scholar]
  39. Meier K. E., Gause K. C., Wisehart-Johnson A. E., Gore A. C., Finley E. L., Jones L. G., Bradshaw C. D., McNair A. F., Ella K. M. 1998; Effects of propranolol on phosphatidate phosphohydrolase and mitogen-activated protein kinase activities in A7r5 vascular smooth muscle cells. Cell Signal10:415–426[CrossRef]
    [Google Scholar]
  40. Moritz A., De Graan P. N., Gispen W. H., Wirtz K. W. 1992; Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J Biol Chem267:7207–7210
    [Google Scholar]
  41. Morlock K. R., McLaughlin J. J., Lin Y. P., Carman G. M. 1991; Phosphatidate phosphatase from Saccharomyces cerevisiae . Isolation of 45- and 104-kDa forms of the enzyme that are differentially regulated by inositol. J Biol Chem266:3586–3593
    [Google Scholar]
  42. Navarro-Garcia F., Sanchez M., Nombela C., Pla J. 2001; Virulence genes in the pathogenic yeast Candida albicans . FEMS Microbiol Rev25:245–268[CrossRef]
    [Google Scholar]
  43. Odds F. C. 1988; Candida and Candidosis, 2nd edn. Philadelphia, PA: Bailliere Tindall;
    [Google Scholar]
  44. Odorizzi G., Babst M., Emr S. D. 2000; Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci25:229–235[CrossRef]
    [Google Scholar]
  45. Ohama T., Suzuki T., Mori M., Osawa S., Ueda T., Watanabe K., Nakase T. 1993; Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res21:4039–4045[CrossRef]
    [Google Scholar]
  46. Rameh L. E., Tolias K. F., Duckworth B. C., Cantley L. C. 1997; A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature390:192–196[CrossRef]
    [Google Scholar]
  47. Rex J. H., Rinaldi M. G., Pfaller M. A. 1995; Resistance of Candida species to fluconazole. Antimicrob Agents Chemother39:1–8[CrossRef]
    [Google Scholar]
  48. Rose K., Rudge S. A., Frohman M. A., Morris A. J., Engebrecht J. 1995; Phospholipase D signaling is essential for meiosis. Proc Natl Acad Sci USA92:12151–12155[CrossRef]
    [Google Scholar]
  49. Santos M. A., Keith G., Tuite M. F. 1993; Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5′-CAG-3(leucine) anticodon. EMBO J12:607–616
    [Google Scholar]
  50. Sherman F. 1991; Getting started with yeast. Methods Enzymol194:3–21
    [Google Scholar]
  51. Siddhanta A., Shields D. 1998; Secretory vesicle budding from the trans-Golgi network is mediated by phosphatidic acid levels. J Biol Chem273:17995–17998[CrossRef]
    [Google Scholar]
  52. Surewicz W. K., Leyko W. 1981; Interaction of propranolol with model phospholipid membranes. Monolayer, spin label and fluorescent spectroscopy studies. Biochim Biophys Acta643:387–397[CrossRef]
    [Google Scholar]
  53. Tolias K. F., Hartwig J. H., Ishihara H., Shibasaki Y., Cantley L. C., Carpenter C. L. 2000; Type I alpha phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Curr Biol10:153–156
    [Google Scholar]
  54. Vancurova I., Choi J. H., Lin H., Kuret J., Vancura A. 1999; Regulation of phosphatidylinositol 4-phosphate 5-kinase from Schizosaccharomyces pombe by casein kinase I. J Biol Chem274:1147–1155[CrossRef]
    [Google Scholar]
  55. Varnai P., Balla T. 1998; Visualization of phosphoinositides that bind pleckstrin homology domains: calcium-and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol143:501–510[CrossRef]
    [Google Scholar]
  56. Waksman M., Eli Y., Liscovitch M., Gerst J. E. 1996; Identification and characterization of a gene encoding phospholipase D activity in yeast. J Biol Chem271:2361–2364[CrossRef]
    [Google Scholar]
  57. Wu W. I., Lin Y. P., Wang E., Merrill A. H. Jr, Carman G. M. 1993; Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by sphingoid bases. J Biol Chem268:13830–13837
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-6-1737
Loading
/content/journal/micro/10.1099/00221287-148-6-1737
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error