1887

Abstract

The respiratory chain of KF707 in membranes isolated from cells grown in the presence or absence of the toxic oxyanion tellurite ( \(TeO_{3}^{2{-}}\) ) was examined. Aerobic growth in the absence of tellurite shows an NADH-dependent respiration which is 80% catalysed by the cytochrome (cyt) -containing pathway leading to two terminal membrane-bound cyt oxidases inhibited by different concentrations of KCN (IC 02 and 1 μM). A third oxidase, catalysing the remaining 20% of the cyanide-resistant respiration and fully inhibited by 2–3 mM KCN, is also present; this latter pathway accounts for 60–70% of the total NADH-dependent respiration in membranes from cells grown in LB medium supplemented with potassium tellurite (35 μg ml). Two high-potential -type haems ( +395 and 318 mV) are redox centres of a membrane-bound cyt oxidase (possibly of the type) which shows a 50% decrease of its activity in parallel with a similar decrease of the -type haem content (mostly soluble cyt ) in membranes from tellurite-grown cells; the latter type of cells specifically contain a cyt type at +203 mV (pH 90) which is likely to be involved in cyanide-resistant respiration. Comparison of the growth curve of KF707 cells in parallel with tellurite uptake showed that intracellular accumulation of tellurium (Te) crystallites starts from the mid-exponential growth phase, whereas tellurite-induced changes of the respiratory chain are already evident during the early stages of growth. These data were interpreted as showing that reduction of tellurite to tellurium and tellurite-dependent modifications of the respiratory chain are unrelated processes in KF707.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1699
2002-06-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481699a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1699&mimeType=html&fmt=ahah

References

  1. Allen, J. F. & Holmes, N. G. ( 1986; ). Electron transport and redox titration. In Photosynthesis. Energy Transduction: a Practical Approach , pp. 103-141. Edited by M. F. Hipkins & N. R. Baker. Oxford:IRL Press.
  2. Avazeri, C., Turner, R. J., Pommier, J., Weiner, J. H., Giordano, G. & Vermeglio, A. ( 1997; ). Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology 143, 1181-1189.[CrossRef]
    [Google Scholar]
  3. Bradford, M. M. ( 1976; ). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.[CrossRef]
    [Google Scholar]
  4. Chiong, M., Gonzales, E., Barra, R. & Vasquez, C. ( 1988; ). Purification and biochemical characterization of tellurite-reducing activities from Thermus thermophilus HB8. J Bacteriol 170, 3269-3273.
    [Google Scholar]
  5. Cramer, W. A. & Knaff, D. B. (1990). Energy Transduction in Biological Membranes. A Texbook of Bioenergetics. New York: Springer-Verlag.
  6. Cunningham, L. & Williams, H. D. ( 1995; ). Isolation and characterization of mutants defective in the cyanide-insensitive respiratory pathway of Pseudomonas aeruginosa. J Bacteriol 177, 432-438.
    [Google Scholar]
  7. Daldal, F., Mandaci, S., Winterstein, C., Myllykallio, H., Duyck, K. & Zannoni, D. ( 2001; ). Mobile cytochrome c 2 and membrane-anchored c y are both efficient electron donors to the cbb 3- and aa 3-type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides. J Bacteriol 183, 2013-2024.[CrossRef]
    [Google Scholar]
  8. Fedi, S., Carnevali, M., Fava, F., Andracchio, A., Zappoli, S. & Zannoni, D. ( 2001; ). Polychlorinated biphenyl degradation activities and hybridization analyses of fifteen aerobic strains isolated from a PCB-contaminated site. Res Microbiol 152, 583-592.[CrossRef]
    [Google Scholar]
  9. Hochkoeppler, A., Jenney, F. E., Lang, S. E., Zannoni, D. & Daldal, F. ( 1995; ). Membrane-associated cytochrome c y of Rhodobacter capsulatus is an electron carrier from the cytochrome bc 1 complex to the cytochrome c oxidase during respiration. J Bacteriol 177, 608-613.
    [Google Scholar]
  10. Jobling, M. G. & Ritchie, D. A. ( 1988; ). Genetic and physical analysis of plasmid genes expressing inducible resistance of tellurite in Escherichia coli. Mol Gen Genet 208, 288-293.
    [Google Scholar]
  11. Matsushita, K., Yamada, M., Shinagawa, F., Adachi, O. & Ameyama, M. ( 1980; ). Membrane-bound respiratory chain of Pseudomonas aeruginosa grown aerobically. J Biochem 88, 757-764.
    [Google Scholar]
  12. Moore, M. D. & Kaplan, S. ( 1992; ). Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol 174, 1505-1514.
    [Google Scholar]
  13. Moore, M. D. & Kaplan, S. ( 1994; ). Members of the family Rhodospirillaceae reduce heavy-metal oxyanions to maintain redox poise during photosynthetic growth. ASM News 60, 17-24.
    [Google Scholar]
  14. Poole, R. ( 1988; ). Bacterial cytochrome oxidases. In Bacterial Energy Transduction , pp. 231-291. Edited by C. Anthony. London:Academic Press.
  15. Reynolds, E. S. ( 1963; ). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17, 208-212.[CrossRef]
    [Google Scholar]
  16. Schägger, H. & von Jagow, G. ( 1987; ). Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166, 368-379.[CrossRef]
    [Google Scholar]
  17. Summers, A. O. & Silver, S. ( 1978; ). Microbial transformation of metals. Annu Rev Microbiol 32, 637-672.[CrossRef]
    [Google Scholar]
  18. Taira, K., Hirose, J., Hayashida, S. & Furukawa, K. ( 1992; ). Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem 267, 4844-4853.
    [Google Scholar]
  19. Taylor, D. E. ( 1999; ). Bacterial tellurite resistance. Trends Microbiol 7, 111-115.[CrossRef]
    [Google Scholar]
  20. Terai, T., Kamahora, T. & Yamamura, Y. ( 1958; ). Tellurite reductase from Mycobacterium avium. J Bacteriol 75, 535-539.
    [Google Scholar]
  21. Thomas, P. E., Ryan, D. & Levin, D. W. ( 1976; ). An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem 75, 168-176.[CrossRef]
    [Google Scholar]
  22. Trutko, S. M., Akimenko, V. K., Suzina, N. E., Anisimova, L. A., Shlyapnikov, M. G., Baskunov, B. P., Duda, V. I. & Boronin, A. M. ( 2000; ). Involvement of the respiratory chain of gram-negative bacteria in the reduction of tellurite. Arch Microbiol 173, 178-186.[CrossRef]
    [Google Scholar]
  23. Turner, R. J. ( 2001; ). Tellurite toxicity and resistance in Gram-negative bacteria. Recent Res Dev Microbiol 5, 69-77.
    [Google Scholar]
  24. Turner, R. J., Weiner, J. H. & Taylor, D. E. ( 1992; ). Use of diethyldithiocarbamate for quantitative determination of tellurite uptake by bacteria. Anal Biochem 204, 292-295.[CrossRef]
    [Google Scholar]
  25. Turner, R. J., Weiner, J. H. & Taylor, D. E. ( 1995; ). The tellurite-resistance determinants tehAtehB and klaAklaBtelB have different biochemical requirements. Microbiology 141, 3133-3140.[CrossRef]
    [Google Scholar]
  26. Wagner, M., Toews, A. D. & Morell, P. ( 1995; ). Tellurite specifically affects squalene epoxidase: investigations examining the mechanism of tellurium-induced neuropathy. J Neurochem 64, 2169-2176.
    [Google Scholar]
  27. Yurkov, V. & Beatty, J. T. ( 1998; ). Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62, 695-724.
    [Google Scholar]
  28. Yurkov, V., Jappé, J. & Vermeglio, A. ( 1996; ). Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Environ Microbiol 62, 4195-4198.
    [Google Scholar]
  29. Zannoni, D. ( 1989; ). The respiratory chains of pathogenic pseudomonads. Biochim Biophys Acta 975, 299-316.[CrossRef]
    [Google Scholar]
  30. Zannoni, D. ( 1995; ). Aerobic and anaerobic electron transport chains in anoxygenic phototrophic bacteria. In Anoxygenic Photosynthetic Bacteria , pp. 949-971. Edited by R. E. Blankenship, M. Madigan & C. E. Bauer. Dordrecht:Kluwer.
  31. Zannoni, D., Jasper, P. & Marrs, B. L. ( 1978; ). Light induced oxygen reduction as a probe of electron transport between respiratory and photosynthetic components in membranes of Rps. capsulata. Arch Biochem Biophys 191, 625-631.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-6-1699
Loading
/content/journal/micro/10.1099/00221287-148-6-1699
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error