1887

Abstract

Plasmid pIPO2 is a cryptic, conjugative, broad-host-range plasmid isolated from the wheat rhizosphere. It efficiently self-transfers between α, β and γ and has a mobilizing/retromobilizing capacity for IncQ plasmids. The complete nucleotide sequence of pIPO2 is presented on the basis of its mini-Tn::-tagged derivative, pIPO2T. The pIPO2 sequence is 39815 bp long and contains at least 43 complete ORFs. Apart from a suite of ORFs with unknown function, all of the genes carried on pIPO2 are predicted to be involved in plasmid replication, maintenance and conjugative transfer. The overall organization of these genes is different from previously described plasmids, but is similar to the genetic organization seen in pSB102, a conjugative plasmid recently isolated from the bacterial community of the alfalfa rhizosphere. The putative conjugative transfer region of pIPO2 covers 23 kb and contains the genes required for DNA processing (Dtr) and mating pair formation (Mpf). The organization of these transfer genes in pIPO2 is highly similar to the genetic organization seen in the environmental plasmid pSB102 and in pXF51 from the plant pathogen . Plasmids pSB102 and pXF51 have recently been proposed to form a new family of environmental broad-host-range plasmids. Here it is suggested that pIPO2 is a new member of this family. The proposed Mpf system of pIPO2 shares high amino acid sequence similarity with equivalent VirB proteins from the type IV secretion system of spp. Sequence information was used to design primers specific for the detection of pIPO2. Environmental DNA from a range of diverse habitats was screened by PCR with these primers. Consistently positive signals for the presence of pIPO2 were obtained from a range of soil-related habitats, including the rhizospheres of young wheat plants, of field-grown oats and of grass (all gramineous plants), as well as from the rhizosphere of tomato plants. These data add to the growing evidence that plasmids carry advantageous genes with as yet undefined functions in plant-associated communities.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1637
2002-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481637a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1637&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Balzer D., Pansegrau W., Lanka E. 1994; Essential motifs of relaxase (TraI) and TraG proteins involved in conjugative transfer of Plasmid RP4. J Bacteriol 176:4285–4295
    [Google Scholar]
  3. Bayer M., Eferl R., Zellnig G., Teferle K., Dijkstra A., Koraimann G., Högenauer G. 1995; Gene 19 of plasmid R1 is required for both efficient conjugative DNA transfer and bacteriophage R17 infection. J Bacteriol 177:4279–4288
    [Google Scholar]
  4. Bignell C., Thomas C. M. 2001; The bacterial ParA–ParB partitioning proteins. J Biotechnol 91:1–34 [CrossRef]
    [Google Scholar]
  5. Christie P. J., Vogel J. P. 2000; Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8:354–360 [CrossRef]
    [Google Scholar]
  6. Cobbe N., Heck M. M. S. 2000; SMCs in the world of chromosome biology – from prokaryotes to higher eukaryotes. J Struct Biol 129:123–143 [CrossRef]
    [Google Scholar]
  7. Dang T. A., Zhou X. R., Graf B., Christie P. J. 1999; Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on the assembly and function of the T-DNA transporter. Mol Microbiol 32:1239–1253 [CrossRef]
    [Google Scholar]
  8. Das A., Xie Y. H. 2000; The Agrobacterium T-DNA transport pore proteins VirB8, VirB9, and VirB10 interact with one another. J Bacteriol 182:758–763 [CrossRef]
    [Google Scholar]
  9. Daugelavićius R., Bamford J. K., Grahn A. M., Lanka E., Bamford D. H. 1997; The IncP plasmid-encoded cell-envelope-associated DNA transfer complex increases cell permeability. J Bacteriol 179:5195–5202
    [Google Scholar]
  10. Deibler R. W., Rahmati S., Zechiedrich E. L. 2001; Topoisomerase IV, alone, unknots DNA in E. coli . Genes Dev 15:748–761 [CrossRef]
    [Google Scholar]
  11. de la Cruz F., Davies J. 2000; Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–133 [CrossRef]
    [Google Scholar]
  12. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  13. Dodd I. B., Egan J. B. 1990; Improved detection of helix–turn–helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18:5019–5026 [CrossRef]
    [Google Scholar]
  14. Duarte G. F., Rosado A. S., Seldin L., De Araujo W., van Elsas J. D. 2001; Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization ( dsz ) genes. Appl Environ Microbiol 67:1052–1062 [CrossRef]
    [Google Scholar]
  15. Egelman E. H. 2001; Pumping DNA. Nature 409:573–575 [CrossRef]
    [Google Scholar]
  16. Eisenbrandt R., Kalkum M., Lai E. M., Lurz R., Kado C. I., Lanka E. 1999; Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J Biol Chem 274:22548–22555 [CrossRef]
    [Google Scholar]
  17. Eisenbrandt R., Kalkum M., Lurz R., Lanka E. 2000; Maturation of IncP pilin precursors resembles the catalytic Dyad-like mechanism of leader peptidases. J Bacteriol 182:6751–6761 [CrossRef]
    [Google Scholar]
  18. Gerdes K., Ayora S., Canosa I. 10 other authors 2000 In The Horizontal Gene Pool – Bacterial Plasmids and Gene Spread pp 49–85 Edited by Thomas C. M. Amsterdam, The Netherlands: Harwood Academic Publishers;
    [Google Scholar]
  19. Golub E. I., Low K. B. 1986; Unrelated conjugative plasmids have sequences which are homologous to the leading region of the F factor. J Bacteriol 166:670–672
    [Google Scholar]
  20. Gomis-Rüth F. X., Moncalián G., Perez-Luque R., Gonzalez A., Cabezón E., de la Cruz F., Coll M. 2001; The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409:637–641 [CrossRef]
    [Google Scholar]
  21. Grahn A. M., Haase J., Bamford D. H., Lanka E. 2000; Components of the RP4 conjugative transfer apparatus form an envelope structure bridging inner and outer membranes of donor cells: implications for related macromolecule transport systems. J Bacteriol 182:1564–1574 [CrossRef]
    [Google Scholar]
  22. Greated A., Titiok M., Krasowiak R., Fairclough R., Thomas C. M. 2000; The replication and stable inheritance functions of IncP-9 plasmid pM3. Microbiology 146:2249–2258
    [Google Scholar]
  23. Hill K. E., Weightman A. J., Fry J. C. 1992; Gene transfer in the aquatic environment: persistence and mobilization of the catabolic recombinant plasmid pD10 in the epilithon. Appl Environ Microbiol 58:1292–1300
    [Google Scholar]
  24. Hill K. E., Marchesi J. R., Fry J. C. 1996; Conjugation and mobilization in the epilithon. In Molecular Microbial Ecology Manual pp 1–28 Edited by Akkermans A. D. L., van Elsas J. D., de Bruijn F. J. Dordrecht, The Netherlands: Kluwer Academic Publishers;
    [Google Scholar]
  25. Jagura-Burdzy G., Thomas C. M. 1992; kfrA gene of broad host range plasmid RK2 encodes a novel DNA-binding protein. J Mol Biol 225:651–660 [CrossRef]
    [Google Scholar]
  26. Jovanovic O. S., Ayres E. K., Figurski D. H. 1992; The replication initiator operon of promiscuous plasmid RK2 encodes a gene that complements an Escherichia coli mutant defective in single-stranded DNA-binding protein. J Bacteriol 174:4842–4846
    [Google Scholar]
  27. Krause S., Bárcena M., Pansegrau W., Lurz R., Carazo J. M., Lanka E. 2000a; Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc Natl Acad Sci USA 97:3067–3072 [CrossRef]
    [Google Scholar]
  28. Krause S., Pansegrau W., Lurz R., de la Cruz F., Lanka E. 2000b; Enzymology of type IV macromolecule secretion systems: the conjugative transfer regions of plasmids RP4 and R388 and the cag pathogenicity island of Helicobacter pylori encode structurally and functionally related nucleoside triphosphate hydrolases. J Bacteriol 182:2761–2770 [CrossRef]
    [Google Scholar]
  29. Kumar R. B., Xie Y. H., Das A. 2000; Subcellular localization of the Agrobacterium tumefaciens T-DNA transport pore proteins: VirB8 is essential for the assembly of the transport pore. Mol Microbiol 36:608–617
    [Google Scholar]
  30. Kurland C. G. 2000; Something for everyone – horizontal gene transfer in evolution. EMBO Rep 1:92–95 [CrossRef]
    [Google Scholar]
  31. Kurtz S., Schleiermacher C. 1999; reputer – fast computation of maximal repeats in complete genomes. Bioinformatics 15:426–427 [CrossRef]
    [Google Scholar]
  32. Lawrence J. C., Ochman H. 1998; Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA 95:9413–9417 [CrossRef]
    [Google Scholar]
  33. Lessl M., Pansegrau W., Lanka E. 1992; Relationship of DNA transfer systems: essential transfer factors of plasmid RP4, Ti, and F share common sequences. Nucleic Acids Res 20:6099–6100 [CrossRef]
    [Google Scholar]
  34. Lessl M., Balzer D., Weyrauch K., Lanka E. 1993; The mating pair formation system of plasmid RP4 defined by RSF1010 mobilization and donor-specific phage propagation. J Bacteriol 175:6415–6425
    [Google Scholar]
  35. Li Z., Hiasa H., Kumar U., DiGate R. J. 1997; The traE gene of RP4 encodes a homologue of Escherichia coli DNA topoisomerase III. J Biol Chem 272:19582–19587 [CrossRef]
    [Google Scholar]
  36. Lilley A. K., Bailey M. J. 1997; The acquisition of indigenous plasmids by a genetically marked pseudomonad population colonizing the sugar beet phytosphere is related to local environmental conditions. Appl Environ Microbiol 63:1577–1583
    [Google Scholar]
  37. Lilley A. K., Fry J. C., Day M. J., Bailey M. J. 1994; In situ transfer of an exogenously isolated plasmid between Pseudomonas spp. in sugar beet rhizosphere. Microbiology 140:27–33 [CrossRef]
    [Google Scholar]
  38. Lin M., Smalla K., Heuer H., van Elsas J. D. 2000; Effect of an Alcaligenes faecalis inoculant strain on bacterial communities in flooded soil microcosms planted with rice seedlings. Appl Soil Ecol 15:211–225 [CrossRef]
    [Google Scholar]
  39. Macartney D. P., Williams D. R., Stafford T., Thomas C. M. 1997; Divergence and conservation of the partitioning and global regulation functions in the central control region of the IncP plasmids RK2 and R751. Microbiology 143:2167–2177 [CrossRef]
    [Google Scholar]
  40. Marques M. V., da Silva A. M., Gomes S. L. 2001; Genetic organization of plasmid pXF51 from the plant pathogen Xylella fastidiosa . Plasmid 45:184–199 [CrossRef]
    [Google Scholar]
  41. Miller H. J., Henken G., van Veen J. A. 1989; Variation and composition of bacterial populations in the rhizospheres of maize, wheat and grass cultivars. Can J Microbiol 35:656–660 [CrossRef]
    [Google Scholar]
  42. Moncalián G., Cabezón E., Alkorta I., Valle M., Moro F., Valpuesta J. M., Goñi F. M., de la Cruz F. 1999; Characterization of ATP and DNA binding activities of TrwB, the coupling protein essential in plasmid R388 conjugation. J Biol Chem 274:36117–36124 [CrossRef]
    [Google Scholar]
  43. Myers E. W., Miller W. 1988; Optimal alignments in linear space. Comput Appl Biosci 4:11–17
    [Google Scholar]
  44. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Sys 8:581–599 [CrossRef]
    [Google Scholar]
  45. O’Callaghan D., Cazevieille C., Allardet-Servent A., Boschiroli M. L., Bourg G., Foulongne V., Frutos P., Kulakov Y., Ramuz M. 1999; A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis . Mol Microbiol 33:1210–1220
    [Google Scholar]
  46. Ochman H., Lawrence J. G., Groisman E. A. 2000; Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304 [CrossRef]
    [Google Scholar]
  47. Okumura M. S., Kado C. I. 1992; The region essential for efficient autonomous replication of pSa in Escherichia coli . Mol Gen Genet 235:55–63 [CrossRef]
    [Google Scholar]
  48. Pansegrau W., Lanka E. 1996; Enzymology of DNA transfer by conjugative mechanisms. Progr Nucleic Acids Res Mol Biol 54:197–251
    [Google Scholar]
  49. Pansegrau W., Schoumacher F., Hohn B., Lanka E. 1993; Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation. Proc Natl Acad Sci USA 90:11538–11542 [CrossRef]
    [Google Scholar]
  50. Pansegrau W., Lanka E., Barth P. T. & 7 other authors (1994a). Complete nucleotide sequence of Birmingham IncPα plasmids: compilation and comparative analysis of sequence data. J Mol Biol 239:623–663 [CrossRef]
    [Google Scholar]
  51. Pansegrau W., Schröder W., Lanka E. 1994b; Concerted action of three distinct domains in the DNA cleaving–joining reaction catalyzed by relaxase (TraI) of conjugative plasmid RP4. J Biol Chem 269:2782–2789
    [Google Scholar]
  52. Planet P. J., Kachlany S. C., DeSalle R., Figurski D. H. 2001; Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci USA 98:2503–2508 [CrossRef]
    [Google Scholar]
  53. Preston K. E., Radomski C. C. A., Venezia A. 2000; Nucleotide sequence of a 7-kb fragment of pACM1 encoding an IncM DNA primase and other proteins associated with conjugation. Plasmid 44:12–23 [CrossRef]
    [Google Scholar]
  54. Pugsley A. P. 1993; The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev 57:50–108
    [Google Scholar]
  55. Pukall R., Tschäpe H., Smalla K. 1996; Monitoring the spread of broad host and narrow host range plasmids in soil microcosms. FEMS Microbiol Ecol 20:53–66 [CrossRef]
    [Google Scholar]
  56. Reese M. G., Harris N. L., Eeckman F. H. 1996; Large scale sequencing specific neural networks for promoter and splice site recognition. In Biocomputing: Proceedings of the 1996 Pacific Symposium Edited by Hunter L., Klein T. E. Singapore: World Scientific Publishing;
    [Google Scholar]
  57. Rosado A. S., Duarte G. F., Seldin L., van Elsas J. D. 1998; Genetic diversity of nifH gene sequences in Paenibacillus azotofixans strains and soil samples analyzed by denaturing gradient gel electrophoresis of PCR-amplified gene fragments. Appl Environ Microbiol 64:2770–2779
    [Google Scholar]
  58. Rost B., Casadio R., Fariselli P., Sander C. 1995; Prediction of helical transmembrane segments at 95% accuracy. Protein Sci 4:521–533
    [Google Scholar]
  59. Sambrook J, Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  60. Schmidt-Eisenlohr H., Domke N., Angerer C., Wanner G., Zambryski P. C., Baron C. 1999; Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens . J Bacteriol 181:7485–7492
    [Google Scholar]
  61. Schmiederer M., Anderson B. 2000; Cloning, sequencing, and expression of three Bartonella henselae genes homologous to the Agrobacterium tumefaciens VirB region. DNA Cell Biol 19:141–147 [CrossRef]
    [Google Scholar]
  62. Schneiker S., Keller M., Dröge M., Lanka E., Pühler A., Selbitschka W. 2001; The genetic organization and evolution of the broad-host-range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa. Nucleic Acids Res 29:5169–5181 [CrossRef]
    [Google Scholar]
  63. Shirasu K., Koukolı́ková-Nicola Z., Hohn B., Kado C. I. 1994; An inner-membrane-associated virulence protein essential for T-DNA transfer from Agrobacterium tumefaciens to plants exhibits ATPase activity and similarities to conjugative transfer genes. Mol Microbiol 11:581–588 [CrossRef]
    [Google Scholar]
  64. Sieira R., Comerci D. J., Sanchez D. O., Ugalde R. A. 2000; A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J Bacteriol 182:4849–4855 [CrossRef]
    [Google Scholar]
  65. Simpson A. J. G., Reinach F. C., Arruda. 113 other authors 2000; The genome sequence of the plant pathogen Xylella fastidiosa . Nature 406:151–157 [CrossRef]
    [Google Scholar]
  66. Smalla K., Cresswell N., Mendonca-Hagler L. C., Wolters A., van Elsas J. D. 1993; Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. J Appl Bacteriol 74:78–85 [CrossRef]
    [Google Scholar]
  67. Smalla K., Osborn A. M., Wellington E. M. H. 2000; Isolation and characterisation of plasmids. In The Horizontal Gene Pool – Bacterial Plasmids and Gene Spread pp 207–248 Edited by Thomas C. M. Amsterdam, The Netherlands: Harwood Academic Publishers;
    [Google Scholar]
  68. Smalla K., Wieland G., Buchner A., Zock A., Parzy J., Kaiser S., Roskot N., Heuer H., Berg G. 2001; Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751 [CrossRef]
    [Google Scholar]
  69. Smit E., van Elsas J. D., van Veen J. A., de Vos W. M. 1991; Detection of plasmid transfer from Pseudomonas fluorescens to indigenous bacteria in soil by using bacteriophage ΦR2f for donor counterselection. Appl Environ Microbiol 57:3482–3488
    [Google Scholar]
  70. Smit E., Venne D., van Elsas J. D. 1993; Mobilization of a recombinant IncQ plasmid between bacteria on agar and in soil via co-transfer or retrotransfer. Appl Environ Microbiol 59:2257–2263
    [Google Scholar]
  71. Staden R. 1996; The Staden sequence analysis package. Mol Biotechnol 5:233–241 [CrossRef]
    [Google Scholar]
  72. Szpirer C., Top E., Couturier M., Mergeay M. 1999; Retrotransfer or gene capture: a feature of conjugative plasmids, with ecological and evolutionary significance. Microbiology 145:3321–3329
    [Google Scholar]
  73. Thomas C. M. editor 2000a The Horizontal Gene Pool – Bacterial Plasmids and Gene Spread Amsterdam, The Netherlands: Harwood Academic Publishers;
    [Google Scholar]
  74. Thomas C. M. 2000b; Paradigms of plasmid organisation. Mol Microbiol 37:485–491
    [Google Scholar]
  75. Thorsted P. B., Macartney D. P., Akhtar P. 9 other authors 1998; Complete sequence of the IncPβ plasmid R751: implications for evolution and organization of the IncP backbone. J Mol Biol 282:969–990 [CrossRef]
    [Google Scholar]
  76. Thorstenson Y. R., Kuldau G. A., Zambryski P. C. 1993; Subcellular localization of seven VirB proteins of Agrobacterium tumefaciens : implications for the formation of a T-DNA transport structure. J Bacteriol 175:5233–5241
    [Google Scholar]
  77. Top E., de Smet I., Verstraete W., Dijkmans R., Mergeay M. 1994; Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Appl Environ Microbiol 60:831–839
    [Google Scholar]
  78. van Elsas J. D., Smalla K, de Bruijn F. J. 1995; Extraction of microbial community DNA from soils. In Molecular Microbial Ecology Manual pp 1.3.31–11 Edited by Akkermans A. D. L., van Elsas J. D. Dordrecht, The Netherlands: Kluwer Academic Publishers;
    [Google Scholar]
  79. van Elsas J. D., Trevors J. T., Starodub M.-E. 1988; Bacterial conjugation between pseudomonads in the rhizosphere of wheat. FEMS Microbiol Ecol 53:299–306 [CrossRef]
    [Google Scholar]
  80. van Elsas J. D., McSpadden Gardener B. B., Wolters A. C., Smit E. 1998; Isolation, characterization, and transfer of cryptic gene-mobilizing plasmids in the wheat rhizosphere. Appl Environ Microbiol 64:880–889
    [Google Scholar]
  81. van Elsas J. D., Fry J., Hirsch P., Molin S. 2000a; Ecology of plasmid transfer and spread. In The Horizontal Gene Pool – Bacterial Plasmids and Gene Spread pp 175–206 Edited by Thomas C. M. Amsterdam, The Netherlands: Harwood Academic Publishers;
    [Google Scholar]
  82. van Elsas J. D., Kastelein P., van Bekkum P., van der Wolf J. M., de Vries P. M., van Overbeek L. S. 2000b; Survival of Ralstonia solanacearum biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopathology 90:1358–1366 [CrossRef]
    [Google Scholar]
  83. van Overbeek L. S., van Veen J. A., van Elsas J. D. 1995; Induced reporter gene activity, enhanced stress resistance, and competitive ability of a genetically modified Pseudomonas fluorescens strain released into a field plot planted with wheat. Appl Environ Microbiol 63:1965–1973
    [Google Scholar]
  84. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases, and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951
    [Google Scholar]
  85. Yeo H. J., Savvides S. N., Herr A. B., Lanka E., Waksman G. 2000; Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol Cell 6:1461–1472 [CrossRef]
    [Google Scholar]
  86. Zechner E. L., de la Cruz F., Eisenbrandt R. 8 other authors 2000; Conjugative transfer processes. In The Horizontal Gene Pool – Bacterial Plasmids and Gene Spread pp 87–174 Edited by Thomas C. M. Amsterdam, The Netherlands: Harwood Academic Publishers;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-6-1637
Loading
/content/journal/micro/10.1099/00221287-148-6-1637
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error