1887

Abstract

When is subjected to phosphate starvation, the Pho and σ-dependent general stress regulons are activated to elicit, respectively, specific and non-specific responses to this nutrient-limitation stress. A set of isogenic mutants, with a β-galactosidase reporter gene transcriptionally fused to the inactivated target gene, was used to identify genes of unknown function that are induced or repressed under phosphate limitation. Nine phosphate-starvation-induced () genes were identified: , , and were regulated by the PhoP–PhoR two-component system responsible for controlling the expression of genes in the Pho regulon, while (renamed ), , , and were dependent on the alternative sigma factor σ, which controls the expression of the general stress genes. Genes and are unique members of the Pho regulon, since they are phosphate-starvation induced via PhoP–PhoR from a sporulation-specific σ promoter or a promoter that requires the product of a σ-dependent gene. Null mutations in key regulatory genes and showed that the Pho and σ-dependent general stress regulons of interact to modulate the levels at which each are activated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-5-1593
2002-05-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/5/1481593a.html?itemId=/content/journal/micro/10.1099/00221287-148-5-1593&mimeType=html&fmt=ahah

References

  1. Akbar S., Kang C. M., Gaidenko T. A., Price C. W.. 1997; Modulator protein RsbR regulates environmental signalling in the general stress pathway of Bacillus subtilis . Mol Microbiol24:567–578[CrossRef]
    [Google Scholar]
  2. Akbar S., Gaidenko T. A., Kang C. M., O’Reilly M., Devine K. M., Price C. W.. 2001; New family of regulators in the environmental signaling pathway which activates the general stress transcription factor σB of Bacillus subtilis . J Bacteriol183:1329–1338[CrossRef]
    [Google Scholar]
  3. Antelmann H., Scharf C., Hecker M.. 2000; Phosphate starvation-inducible proteins of Bacillus subtilis : proteomics and transcriptional analysis. J Bacteriol182:4478–4490[CrossRef]
    [Google Scholar]
  4. Benson A. K., Haldenwang W. G.. 1993; Bacillus subtilis σB is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase. Proc Natl Acad Sci USA90:2330–2334[CrossRef]
    [Google Scholar]
  5. Birkey S. M., Sun G., Piggot P. J., Hulett F. M.. 1994; A pho regulon promoter induced under sporulation conditions. Gene119:95–100
    [Google Scholar]
  6. Bookstein C., Edwards C. W., Kapp N. V., Hulett F. M.. 1990; The Bacillus subtilis 168 alkaline phosphatase III gene: impact of a phoAIII mutation on total alkaline phosphatase synthesis. J Bacteriol172:3730–3737
    [Google Scholar]
  7. Brody M. S., Vijay K., Price C. W.. 2001; Catalytic function of an α/β hydrolase is required for energy stress activation of the σB transcription factor in Bacillus subtilis . J Bacteriol183:6422–6428[CrossRef]
    [Google Scholar]
  8. Chesnut R. S., Brookstein C., Hulett F. M.. 1991; Separate promoters direct expression of phoAIII , a member of the Bacillus subtilis alkaline phosphatase multigene family, during phosphate starvation and sporulation. Mol Microbiol5:2181–2190[CrossRef]
    [Google Scholar]
  9. Dufour A., Haldenwang W. G.. 1994; Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV). J Bacteriol176:1813–1820
    [Google Scholar]
  10. Eder S., Shi L., Jensen K., Yamane K., Hulett F. M.. 1996; A Bacillus subtilis secreted phosphodiesterase/alkaline phosphatase is the product of a Pho regulon gene, phoD . Microbiology142:2041–2047[CrossRef]
    [Google Scholar]
  11. Eder S., Liu W., Hulett F. M.. 1999; Mutational analysis of the phoD promoter in Bacillus subtilis : implications for PhoP binding and promoter activation of Pho regulon promoters. J Bacteriol181:2017–2025
    [Google Scholar]
  12. Fawcett P., Eichenberger P., Losick R., Youngman P.. 2000; The transcriptional profile of early to middle sporulation in Bacillus subtilis . Proc Natl Acad Sci USA97:8063–8068[CrossRef]
    [Google Scholar]
  13. Gaidenko T. A., Price C. W.. 1998; General stress transcription factor σB and sporulation sigma factor σH each contribute to survival of Bacillus subtilis under extreme conditions. J Bacteriol180:3730–3733
    [Google Scholar]
  14. Harwood C. R., Wipat A.. 1996; Sequencing and functional analysis of the genome of Bacillus subtilis strain 168. FEBS Lett389:84–87[CrossRef]
    [Google Scholar]
  15. Hecker M., Völker U.. 1998; Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the σB regulon. Mol Microbiol29:1129–1136[CrossRef]
    [Google Scholar]
  16. Hulett F. M.. 1996; The signal-transduction network for Pho regulation in Bacillus subtilis . Mol Microbiol19:933–939[CrossRef]
    [Google Scholar]
  17. Hulett F. M., Bookstein C., Jensen K.. 1990; Evidence for two structural genes for alkaline phosphatase in Bacillus subtilis . J Bacteriol172:735–740
    [Google Scholar]
  18. Hulett F. M., Lee J., Shi L., Sun G., Chesnut R., Sharkova E., Duggan M. F., Kapp N.. 1994; Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis . J Bacteriol176:1348–1358
    [Google Scholar]
  19. Igo M., Lampe M., Ray C., Schafer W., Losick R., Moran C. P. Jr. 1987; Genetic studies of a secondary RNA polymerase sigma factor in Bacillus subtilis . J Bacteriol169:3464–3469
    [Google Scholar]
  20. Kunst F., Ogasawara N., Moszer I.. 148 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature390:249–256[CrossRef]
    [Google Scholar]
  21. Lahooti M., Harwood C. R.. 1999; Transcriptional analysis of the Bacillus subtilis teichuronic acid operon. Microbiology145:3409–3417
    [Google Scholar]
  22. Lahooti M., Harwood C. R., Prágai Z.. 2000; Phosphate regulation. In Functional Analysis of Bacterial Genes: a Practical Manual pp237–244 Edited by Schumann W.. Ehrlich S. D., Ogasawara N.. Chichester: Wiley;
    [Google Scholar]
  23. Liu W., Hulett F. M.. 1998; Comparison of PhoP binding to the tuaA promoter with PhoP binding to other Pho-regulon promoters establishes a Bacillus subtilis Pho core binding site. Microbiology144:1443–1450[CrossRef]
    [Google Scholar]
  24. Liu W., Eder S., Hulett F. M.. 1998; Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for Pho∼P. J Bacteriol180:753–758
    [Google Scholar]
  25. Miller J. H.. 1972; Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Mogk A., Hayward R., Schumann W.. 1996; Integrative vectors for constructing single-copy transcriptional fusions between Bacillus subtilis promoters and various reporter genes encoding heat-stable enzymes. Gene182:33–36[CrossRef]
    [Google Scholar]
  27. Müller J. P., An Z., Merad T., Hancock I. C., Harwood C. R.. 1997; Influence of Bacillus subtilis phoR on cell wall anionic polymers. Microbiology143:947–956[CrossRef]
    [Google Scholar]
  28. Nakano M. M., Zhu Y., LaCelle M., Zhang X., Hulett F. M.. 2000; Interaction of ResD with regulatory regions of anaerobically induced genes of Bacillus subtilis . Mol Microbiol37:1198–1207[CrossRef]
    [Google Scholar]
  29. Nicholson W. L., Setlow P.. 1990; Sporulation, germination and outgrowth. In Molecular Biological Methods for Bacillus pp391–450 Edited by Harwood C. R.. Cutting S. M.. Chichester: Wiley;
    [Google Scholar]
  30. Prágai Z., Harwood C. R.. 2000a; Screening for mutants affected in their response to phosphate. In Functional Analysis of Bacterial Genes: a Practical Manual pp245–249 Edited by Schumann W.. Ehrlich S. D., Ogasawara N.. Chichester: Wiley;
    [Google Scholar]
  31. Prágai Z., Harwood C. R.. 2000b; YsxC, a putative GTP-binding protein essential for the growth of Bacillus subtilis 168. J Bacteriol182:6819–6823[CrossRef]
    [Google Scholar]
  32. Prágai Z., Tjalsma H., Bolhuis A., Venema G., Bron S., van Dijl J. M.. 1997; The signal peptidase II ( lsp ) gene of Bacillus subtilis . Microbiology143:1327–1333[CrossRef]
    [Google Scholar]
  33. Prágai Z., Eschevins C., Bron S., Harwood C. R.. 2001; Bacillus subtilis NhaC, an Na+/H+ antiporter, influences expression of the phoPR operon and production of alkaline phosphatases. J Bacteriol183:2505–2515[CrossRef]
    [Google Scholar]
  34. Qi Y., Kobayashi Y., Hulett F. M.. 1997; The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in the regulation of the Pho regulon. J Bacteriol179:2534–2539
    [Google Scholar]
  35. Robichon D., Arnaud M., Gardan R., O’Reilly M., Rapoport G., Debarbouille M., Prágai Z.. 2000; Expression of a new operon from Bacillus subtilis , ykzB-ykoL , under the control of the TnrA and PhoP-PhoR global regulators. J Bacteriol182:1226–1231[CrossRef]
    [Google Scholar]
  36. Steinmetz M., Richter R.. 1994; Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis , through in vivo recombination. Gene142:79–83[CrossRef]
    [Google Scholar]
  37. Vagner V., Dervyn E., Ehrlich S. D.. 1998; A vector for systematic inactivation in Bacillus subtilis . Microbiology144:3097–3104[CrossRef]
    [Google Scholar]
  38. Vijay K., Brody M. S., Fredlund E., Price C. W.. 2000; A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the σB transcription factor of Bacillus subtilis . Mol Microbiol35:180–185[CrossRef]
    [Google Scholar]
  39. Voelker U., Voelker A., Haldenwang W. G.. 1996; Reactivation of the Bacillus subtilis anti-σB antagonist, RsbV, by stress- or starvation-induced phosphatase activities. J Bacteriol178:5456–5463
    [Google Scholar]
  40. Voelker U., Luo T., Smirnova N., Haldenwang W. G.. 1997; Stress activation of Bacillus subtilis σB can occur in the absence of the σB negative regulator RsbX. J Bacteriol179:1980–1984
    [Google Scholar]
  41. Yang X., Kang C. M., Brody M. S., Price C. W.. 1996; Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev10:2265–2275[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-5-1593
Loading
/content/journal/micro/10.1099/00221287-148-5-1593
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error