1887

Abstract

The effect of detrimental conditions on bacterial motility in was investigated. Expression profiling of mutant strains by DNA arrays and analysis of phenotypic traits demonstrated that motility and low-pH resistance are coordinately regulated. Analysis of transcriptional fusions suggests that bacterial motility in response to an acidic environment is mediated via the control by H-NS of expression. Moreover, the results suggested that the presence of an extended mRNA 5′ end and DNA topology are required in this process. Finally, the presence of a similar regulatory region in several Gram-negative bacteria implies that this mechanism is largely conserved.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-5-1543
2002-05-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/5/1481543a.html?itemId=/content/journal/micro/10.1099/00221287-148-5-1543&mimeType=html&fmt=ahah

References

  1. Adams, P., Fowler, R., Kinsella, N., Howell, G., Farris, M., Coote, P. & O’Connor, C. D. ( 2001; ). Proteomic detection of PhoPQ- and acid-mediated repression of Salmonella motility. Proteomics 1, 597-607.[CrossRef]
    [Google Scholar]
  2. Adler, J. ( 1973; ). A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 74, 77-91.[CrossRef]
    [Google Scholar]
  3. Adler, J. & Templeton, B. ( 1967; ). The effect of environmental conditions on the motility of Escherichia coli. J Gen Microbiol 46, 175-184.[CrossRef]
    [Google Scholar]
  4. Aizawa, S.-I. & Kubori, T. ( 1998; ). Bacterial flagellation and cell division. Genes Cells 3, 625-634.[CrossRef]
    [Google Scholar]
  5. Anderson, P. & Bauer, W. ( 1978; ). Supercoiling in closed circular DNA: dependence upon ion type and concentration. Biochemistry 17, 594-601.[CrossRef]
    [Google Scholar]
  6. Arnold, H. H. & Winter, B. ( 1998; ). Muscle differentiation: more complexity to the network of myodenic regulators. Curr Opin Genet Dev 8, 539-544.[CrossRef]
    [Google Scholar]
  7. Bartlett, D. H., Frantz, B. B. & Matsumura, P. ( 1988; ). Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5′ consensus sequences of operons under FlbB and FlaI control. J Bacteriol 170, 1575-1581.
    [Google Scholar]
  8. Bearson, B., Wilson, L. & Foster, J. ( 1998; ). A low pH-inducible, PhoQP-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J Bacteriol 180, 2409-2417.
    [Google Scholar]
  9. Bertin, P., Lejeune, P., Colson, C. & Danchin, A. ( 1992; ). Mutations in bglY, the structural gene for the DNA-binding protein H1 of Escherichia coli, increase the expression of the kanamycin resistance gene carried by plasmid pGR71. Mol Gen Genet 233, 184-192.[CrossRef]
    [Google Scholar]
  10. Bertin, P., Terao, E., Lee, E. H., Lejeune, P., Colson, C., Danchin, A. & Collatz, E. ( 1994; ). The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J Bacteriol 176, 5537-5540.
    [Google Scholar]
  11. Bertin, P., Benhabiles, N., Krin, E., Laurent-Winter, C., Tendeng, C., Turlin, E., Thomas, A., Danchin, A. & Brasseur, R. ( 1999; ). The structural and functional organization of H-NS-like proteins is evolutionarily conserved in Gram-negative bacteria. Mol Microbiol 31, 319-329.[CrossRef]
    [Google Scholar]
  12. Bertin, P., Hommais, F., Krin, E., Soutourina, O., Tendeng, C., Derzelle, S. & Danchin, A. ( 2001; ). H-NS and H-NS-like proteins in Gram-negative bacteria and their multiple role in the regulation of bacterial metabolism. Biochimie 83, 235-241.[CrossRef]
    [Google Scholar]
  13. Bowra, B. J. & Dilworth, M. J. ( 1981; ). Motility and chemotaxis towards sugars in Rhizobium leguminosarum. J Gen Microbiol 126, 231-235.
    [Google Scholar]
  14. Bruni, C. B., Colantuoni, V., Sbordone, L., Cortese, R. & Blasi, F. ( 1977; ). Biochemical and regulatory properties of Escherichia coli K-12 his mutants. J Bacteriol 130, 4-10.
    [Google Scholar]
  15. Claret, L. & Hughes, C. ( 2000; ). Rapid turnover of FlhD and FlhC, the flagellar regulon transcriptional activator proteins, during Proteus swarming. J Bacteriol 182, 833-836.[CrossRef]
    [Google Scholar]
  16. Condon, C., Putzer, H., Luo, D. & Grunberg-Manago, M. ( 1997; ). Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent in Escherichia coli. J Mol Biol 268, 235-242.[CrossRef]
    [Google Scholar]
  17. Dorman, C. J., McKenna, S. & Beloin, C. ( 2001; ). Regulation of virulence gene expression in Shigella flexneri, a facultative intracellular pathogen. Int J Med Microbiol 291, 89-96.[CrossRef]
    [Google Scholar]
  18. Farr, S. B., Arnosti, D. N., Chamberlin, M. J. & Ames, B. ( 1989; ). An apaH mutation causes AppppA to accumulate and affects motility and catabolite repression in Escherichia coli. Proc Natl Acad Sci USA 86, 5010-5014.[CrossRef]
    [Google Scholar]
  19. Goldstein, E. & Drlica, K. ( 1984; ). Regulation of bacterial DNA supercoiling: plasmid linking numbers vary with growth temperature. Proc Natl Acad Sci USA 81, 4046-4050.[CrossRef]
    [Google Scholar]
  20. Hengge-Aronis, R. ( 1999; ). Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr Opin Microbiol 2, 148-152.[CrossRef]
    [Google Scholar]
  21. Higgins, C. F., Dorman, C. J., Stirling, D. A., Waddell, L., Booth, I. R., May, G. & Bremer, E. ( 1988; ). A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52, 569-584.[CrossRef]
    [Google Scholar]
  22. Hinton, J. C. D., Santos, D. S., Seirafi, A., Hulton, C. J., Pavitt, G. D. & Higgins, C. F. ( 1992; ). Expression and mutational analysis of the nucleoid-associated protein H-NS of Salmonella typhimurium. Mol Microbiol 6, 2327-2337.[CrossRef]
    [Google Scholar]
  23. Hommais, F., Krin, E., Laurent-Winter, C., Soutourina, O., Malpertuy, A., Le Caer, J. P., Danchin, A. & Bertin, P. ( 2001; ). Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40, 20-36.[CrossRef]
    [Google Scholar]
  24. Huang, S. ( 1999; ). Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J Mol Med 77, 469-480.[CrossRef]
    [Google Scholar]
  25. Johansson, J., Balsalobre, C., Wang, S. Y., Urbonaviciene, J., Jin, D. J., Sonden, B. & Uhlin, B. E. ( 2000; ). Nucleoid proteins stimulate stringently controlled bacterial promoters: a link between the cAMP-CRP and the (p)ppGpp regulons in Escherichia coli. Cell 102, 475-485.[CrossRef]
    [Google Scholar]
  26. Jordi, B. J. A. M., Fielder, A., Burns, C. M., Hinton, J. C. D., Dover, N., Ussery, D. W. & Higgins, C. F. ( 1997; ). DNA binding is not sufficient for H-NS-mediated repression of proU expression. J Biol Chem 272, 12083-12090.[CrossRef]
    [Google Scholar]
  27. Kawakami, K., Sato, S., Ozaki, H. & Ikeda, K. ( 2000; ). Six family genes: structure and function as transcription factors and their roles in development. Bioessays 22, 616-626.[CrossRef]
    [Google Scholar]
  28. Kitamura, E., Nakayama, Y., Matsuzaki, H., Matsumoto, K. & Shibuya, I. ( 1994; ). Acidic-phospholipid deficiency represses the flagellar master operon through a novel regulatory region in Escherichia coli. Biosci Biotechnol Biochem 58, 2305-2307.[CrossRef]
    [Google Scholar]
  29. Ko, M. & Park, C. ( 2000; ). H-NS-dependent regulation of flagellar synthesis is mediated by a LysR family protein. J Bacteriol 182, 4670-4672.[CrossRef]
    [Google Scholar]
  30. Kutsukake, K. ( 1997; ). Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium. Mol Gen Genet 254, 440-448.[CrossRef]
    [Google Scholar]
  31. Laurent-Winter, C., Ngo, S., Danchin, A. & Bertin, P. ( 1997; ). Role of Escherichia coli histone-like nucleoid-structuring protein in bacterial metabolism and stress response. Eur J Biochem 244, 767-773.[CrossRef]
    [Google Scholar]
  32. Lejeune, P. & Danchin, A. ( 1990; ). Mutations in the bglY gene increase the frequency of spontaneous deletion in Escherichia coli K-12. Proc Natl Acad Sci USA 87, 360-363.[CrossRef]
    [Google Scholar]
  33. Li, C., Louise, C. J., Shi, W. & Adler, J. ( 1993; ). Adverse conditions which cause lack of flagella in Escherichia coli. J Bacteriol 175, 2229-2235.
    [Google Scholar]
  34. Lin, J., Lee, I. S., Frey, J., Slonczewski, J. L. & Foster, J. W. ( 1995; ). Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 177, 4097-4104.
    [Google Scholar]
  35. Macnab, R. M. (1996). Flagella and motility. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 123–145. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  36. Mahan, M. J., Slauch, J. M. & Mekalanos, J. J. (1996). Environmental regulation of virulence gene expression in Escherichia, Salmonella, and Shigella spp. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 2803–2815. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  37. Miller, J. H. (1992). A Short Course in Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Mizushima, T., Koyanagi, R., Suzuki, E., Tomura, A., Kutsukake, K., Miki, T. & Sekimizu, K. ( 1995; ). Control by phosphatidylglycerol of expression of the flhD gene in Escherichia coli. Biochim Biophys Acta 1245, 397-401.[CrossRef]
    [Google Scholar]
  39. Mizushima, T., Koyanagi, R., Katayama, T., Miki, T. & Sekimizu, K. ( 1997; ). Decrease in expression of the master operon of flagellin synthesis in a dnaA46 mutant of Escherichia coli. Biol Pharm Bull 20, 327-331.[CrossRef]
    [Google Scholar]
  40. Mojica, F. J. M. & Higgins, C. F. ( 1997; ). In vivo supercoiling of plasmid and chromosomal DNA in an Escherichia coli hns mutant. J Bacteriol 179, 3528-3533.
    [Google Scholar]
  41. Putzer, H., Grunberg-Manago, M. & Springer, M. ( 1995; ). Bacterial aminoacyl-tRNA synthetases: genes and regulation of expression. In tRNA: Structure, Biosynthesis and Function , pp. 293-333. Edited by D. Soll & U. L. RajBhandary. Washington, DC:American Society for Microbiology.
  42. Relaix, F. & Buckingham, M. ( 1999; ). From insect eye to vertebrate muscle: redeployment of a regulatory network. Genes Dev 13, 3171-3178.[CrossRef]
    [Google Scholar]
  43. Rohde, J. R., Fox, J. M. & Minnich, S. A. ( 1994; ). Thermoregulation in Yersinia enterocolitica is coincident with changes in DNA supercoiling. Mol Microbiol 12, 187-199.[CrossRef]
    [Google Scholar]
  44. Rohde, J. R., Luan, X. S., Rohde, H., Fox, J. M. & Minnich, S. A. ( 1999; ). The Yersinia enterocolitica pYV virulence plasmid contains multiple intrinsic DNA bends which melt at 37 °C. J Bacteriol 181, 4198-4204.
    [Google Scholar]
  45. Romeo, T. ( 1998; ). Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29, 1321-1330.[CrossRef]
    [Google Scholar]
  46. Sacerdot, C., Caillet, J., Graffe, M., Eyermann, F., Ehresmann, B., Ehresmann, C., Springer, M. & Romby, P. ( 1998; ). The Escherichia coli threonyl-tRNA synthetase gene contains a split ribosomal binding site interrupted by a hairpin structure that is essential for autoregulation. Mol Microbiol 29, 1077-1090.[CrossRef]
    [Google Scholar]
  47. Shi, W., Zhou, Y., Wild, J., Adler, J. & Gross, C. A. ( 1992; ). DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J Bacteriol 174, 6256-6263.
    [Google Scholar]
  48. Shi, W., Bogdanov, M., Dowhan, W. & Zusman, D. R. ( 1993a; ). The pss and psd genes are required for motility and chemotaxis in Escherichia coli. J Bacteriol 175, 7711-7714.
    [Google Scholar]
  49. Shi, W., Li, C., Louise, C. & Adler, J. ( 1993b; ). Mechanism of adverse conditions causing lack of flagella in Escherichia coli. J Bacteriol 175, 2236-2240.
    [Google Scholar]
  50. Silverman, M. & Simon, M. ( 1974; ). Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J Bacteriol 120, 1196-1203.
    [Google Scholar]
  51. Soutourina, O. (2001). Control of gene expression in the motility process in Gram-negative bacteria. PhD thesis, University of Versailles-Saint-Quentin.
  52. Soutourina, O., Kolb, A., Krin, E., Laurent-Winter, C., Rimsky, S., Danchin, A. & Bertin, P. ( 1999; ). Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181, 7500-7508.
    [Google Scholar]
  53. Soutourina, O. A., Semenova, E. A., Parfenova, V. V., Danchin, A. & Bertin, P. ( 2001; ). Control of bacterial motility by environmental factors in polarly flagellated and peritrichous bacteria isolated from Lake Baikal. Appl Environ Microbiol 67, 3852-3859.[CrossRef]
    [Google Scholar]
  54. Stocker, B. A. D. & Campbell, J. C. ( 1959; ). The effect of non-lethal deflagellation on bacterial motility and observations on flagellar regeneration. J Gen Microbiol 20, 670-685.[CrossRef]
    [Google Scholar]
  55. Tse-Dinh, Y. C., Qi, H. & Menzel, R. ( 1997; ). DNA supercoiling and bacterial adaptation: thermotolerance and thermoresistance. Trends Microbiol 5, 323-326.[CrossRef]
    [Google Scholar]
  56. Wei, B. L., Brun-Zinkernagel, A.-M., Simecka, J. W., Pruss, B. M., Babitzke, P. & Romeo, T. ( 2001; ). Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40, 245-256.[CrossRef]
    [Google Scholar]
  57. Weibull, C. ( 1948; ). Some chemical and physico-chemical properties of the flagella of Proteus vulgaris. Biochim Biophys Acta 2, 351-355.[CrossRef]
    [Google Scholar]
  58. Williams, R. M. & Rimsky, S. ( 1997; ). Molecular aspects of the Escherichia coli nucleoid protein, H-NS: a central controller of gene regulatory networks. FEMS Microbiol Lett 156, 175-185.[CrossRef]
    [Google Scholar]
  59. Yanagihara, S., Iyoda, S., Ohnishi, K., Iino, T. & Kutsukake, K. ( 1999; ). Structure and transcriptional control of the flagellar master operon of Salmonella typhimurium. Genes Genet Syst 74, 105-111.[CrossRef]
    [Google Scholar]
  60. Yokota, T. & Gots, J. ( 1970; ). Requirement of adenosine 3′,5′-cyclic monophosphate for flagellation in Escherichia coli and Salmonella typhimurium. J Bacteriol 103, 513-516.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-5-1543
Loading
/content/journal/micro/10.1099/00221287-148-5-1543
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error