1887

Abstract

Three genes from the aminoethoxyvinylglycine (AVG)-producing sp. NRRL 5331 involved in threonine biosynthesis, , and , encoding homoserine dehydrogenase (HDH), homoserine kinase (HK) and threonine synthase (TS), respectively, have been cloned and sequenced. The and genes appear to be organized in a bicistronic operon as deduced by disruption experiments. The gene, however, is transcribed as a monocistronic transcript. The encoded proteins are quite similar to the HDH, HK and TS proteins from other bacterial species. The overall organization of these three genes, in the order , differs from that in other bacteria and is similar to that reported in the genome sequence. This is the first time in which the gene cluster for the three last steps of threonine biosynthesis has been characterized from a streptomycete. Disruption of C indicated that threonine is not a direct precursor for AVG biosynthesis in sp. NRRL 5331 and suggested that the branching point of the aspartic acid-derived biosynthetic route of this metabolite should lie earlier on the threonine biosynthetic route.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-5-1413
2002-05-01
2020-09-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/5/1481413a.html?itemId=/content/journal/micro/10.1099/00221287-148-5-1413&mimeType=html&fmt=ahah

References

  1. Amador E., Castro J. M., Correia A., Martı́n J. F.. 1999; Structure and organization of the rrnD operon of ‘ Brevibacterium lactofermentum ’: analysis of the 16S rRNA gene. Microbiology145:915–924[CrossRef]
    [Google Scholar]
  2. Aparicio J. F., Fouces R., Mendes M. V., Olivera N., Martı́n J. F.. 2000; A complex multienzyme system encoded by five polyketide synthase genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis . Chem Biol7:895–905[CrossRef]
    [Google Scholar]
  3. Bao K., Zhou X., Kieser T., Deng Z.. 1997; pHZ1351, a broad host-range plasmid vector useful for gene cloning and for gene replacement in Streptomyces hygroscopicus KMP3. In Abstracts of the 11th International Symposium on Biology of Actinomycetes Beijing. Beijing: Chinese Society for Microbiology;
    [Google Scholar]
  4. Barry C. S., Blume B., Bouzayen M., Cooper W., Hamilton A. J., Grierson D.. 1996; Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J9:525–535[CrossRef]
    [Google Scholar]
  5. Beck E., Ludwig G., Auerswald E. A., Reiss B., Schaller H.. 1982; Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn 5 . Gene19:327–336[CrossRef]
    [Google Scholar]
  6. Clepet C., Borne F., Krishnapillai V., Baird C., Patte J. C., Cami B.. 1992; Isolation, organization and expression of the Pseudomonas aeruginosa threonine genes. Mol Microbiol6:3109–3119[CrossRef]
    [Google Scholar]
  7. Cole S. T., Brosch R., Parkhill J.. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O.. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res12:387–395[CrossRef]
    [Google Scholar]
  9. Feng L., Kirsch J. F.. 2000; l-Vinylglycine is an alternative substrate as well as a mechanism-based inhibitor of 1-aminocyclopropane-1-carboxylate synthase. Biochemistry39:2436–2444[CrossRef]
    [Google Scholar]
  10. Gehring H., Rando R. R., Christen P.. 1977; Active-site labeling of aspartate aminotransferases by the beta, gamma-unsaturated amino acid vinylglycine. Biochemistry16:4832–4836[CrossRef]
    [Google Scholar]
  11. Giovanelli J., Owens L. D., Mudd S. H.. 1971; Mechanism of inhibition of spinach β-cystathionase by rhizobitoxine. Biochim Biophys Acta227:671–684[CrossRef]
    [Google Scholar]
  12. Goodwin T. W., Mercer E. I.. 1983; Introduction to Plant Biochemistry New York: Pergamon;
    [Google Scholar]
  13. Have A. T., Woltering E. J.. 1997; Ethylene biosynthetic genes are differentially expressed during carnation ( Dianthus caryophyllus L.) flower senescence. Plant Mol Biol34:89–97[CrossRef]
    [Google Scholar]
  14. Hernando-Rico V., Martı́n J. F., Santamarta I., Liras P.. 2001; Structure of the ask–asd operon and formation of aspartokinase subunits in the cephamycin producer ‘ Amycolatopsis lactamdurans ’. Microbiology147:1547–1555
    [Google Scholar]
  15. Hopwood D. A.. 1967; Genetic analysis and genome structure in Streptomyces coelicolor . Bacteriol Rev31:373–403
    [Google Scholar]
  16. Hoshiko S., Makabe O., Nojiri C., Katsumata K., Satoh E., Nagaoka K.. 1987; Molecular cloning and characterisation of the Streptomyces hygroscopicus alpha-amylase gene. J Bacteriol169:1029–1036
    [Google Scholar]
  17. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. 2000; Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  18. Komatsubara S., Kisumi M., Chibata I.. 1979; Transductional construction of a threonine production strain of Serratia marcescens . Appl Environ Microbiol38:1045–1051
    [Google Scholar]
  19. Laber B., Gerbling K-P., Harde C., Neff K.-H., Nordhoff E., Pohlenz H-D.. 1994; Mechanisms of interaction of Escherichia coli threonine synthase with substrates and inhibitors. Biochemistry33:3413–3423[CrossRef]
    [Google Scholar]
  20. La Favre J. S., Eaglesham A. R. J.. 1986; Rhizobitoxine : a phytotoxin of unknown function which is commonly produced by bradyrhizobia. Plant Soil92:443–452[CrossRef]
    [Google Scholar]
  21. Le Y., He J., Vining L. C.. 1996; Streptomyces akiyoshiensis differs from other Gram-positive bacteria in the organization of a core biosynthetic pathway gene for aspartate family amino acids. Microbiology142:791–798[CrossRef]
    [Google Scholar]
  22. Madsen S. M., Albrechtsen B., Hansen E. B., Israelsen H.. 1996; Cloning and transcriptional analysis of two threonine biosynthesis genes from Lactococcus lactis MB1614. J Bacteriol178:3689–3694
    [Google Scholar]
  23. Malumbres M., Martı́n J. F.. 1996; Molecular control mechanisms of lysine and threonine biosynthesis in amino acid-producing corynebacteria: redirecting carbon flow. FEMS Microbiol Lett143:103–114[CrossRef]
    [Google Scholar]
  24. Malumbres M., Mateos L. M., Lumbreras M. A., Guerrero C., Martı́n J. F.. 1994; Analysis and expression of the thrC gene of Brevibacterium lactofermentum and characterization of the encoded threonine synthase. Appl Environ Microbiol60:2209–2219
    [Google Scholar]
  25. Malumbres M., Mateos L. M., Guerrero C., Martı́n J. F.. 1995; Molecular cloning of the hom - thrC - thrB cluster from Bacillus sp. ULM1: expression of the thrC gene in Escherichia coli and corynebacteria, and evolutionary relationships of the threonine genes. Folia Microbiol40:595–606[CrossRef]
    [Google Scholar]
  26. Marchenko G. N., Marchenko N. D., Tsygankov Y. D., Chistoserdov A. Y.. 1999; Organization of threonine biosynthesis genes from the obligate methylotroph Methylobacillus flagellatus . Microbiology145:3273–3282
    [Google Scholar]
  27. Mitchell R. E., Coddington J. M.. 1991; Biosynthetic pathway to rhizobitoxine in Pseudomonas andropogonis . Phytochemistry30:1809–1814[CrossRef]
    [Google Scholar]
  28. Mitchell R. E., Frey E. J.. 1988; Rhizobitoxine and hydroxythreonine production by Pseudomonas andropogonis strains, and the implications to plant disease. Physiol Mol Plant Pathol32:335–341[CrossRef]
    [Google Scholar]
  29. Motoyama H., Maki K., Anazawa H., Ishino S., Teshiba S.. 1994; Cloning and nucleotide sequence of the homoserine dehydrogenase genes ( hom) and the threonine synthase genes ( thrC) of the Gram-negative obligate methylotroph Methylobacillus glycogenes . Appl Environ Microbiol60:111–119
    [Google Scholar]
  30. Owens L. D., Lieberman M., Kunishi A.. 1971; Inhibition of ethylene production by rhizobitoxine. Plant Physiol48:1–4[CrossRef]
    [Google Scholar]
  31. Parsot C.. 1986; Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and d-serine dehydratase. EMBO J5:3013–3019
    [Google Scholar]
  32. Parsot C., Cohen G. N.. 1988; Cloning and nucleotide sequence of the Bacillus subtilis hom gene encoding homoserine dehydrogenase: structural and evolutionary relationships with Escherichia coli aspartokinases-homoserine dehydrogenases I and II. J Biol Chem263:14654–14660
    [Google Scholar]
  33. Peoples O. P., Liebl W., Bodis M., Maeng P. J., Folletie J. T., Archer J. A., Sinskey A. J.. 1988; Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom - thrB operon. Mol Microbiol2:63–72[CrossRef]
    [Google Scholar]
  34. Rando R. R.. 1974; Irreversible inhibition of aspartate aminotransferase by 2-amino-3-butenoic acid. Biochemistry13:3859–3863[CrossRef]
    [Google Scholar]
  35. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A.. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol21:77–96[CrossRef]
    [Google Scholar]
  36. Ruan X., Zhang C., Peters K.. 1993; Bradyrhizobium japonicum rhizobitoxine genes and putative enzyme functions: expression requires a translational frameshift. Proc Natl Acad Sci USA90:2641–2645[CrossRef]
    [Google Scholar]
  37. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R.. 1977; DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA74:5463–5467[CrossRef]
    [Google Scholar]
  39. Satoh S., Yang S. F.. 1989; Inactivation of 1-aminocyclopropane-1-carboxylate synthase by l-vinylglycine as related to the mechanism-based inactivation of the enzyme by S-adenosyl-l-methionine. Plant Physiol91:1036–1039[CrossRef]
    [Google Scholar]
  40. Soper T. S., Manning J. M., Marcotte P. A., Walsh C. T.. 1977; Inactivation of bacterial d-amino acid transaminases by the olefinic amino acid d-vinylglycine. J Biol Chem252:1571–1575
    [Google Scholar]
  41. Théze J., Saint-Girons I.. 1974; Threonine locus of Escherichia coli K12: genetic structure and evidence for an operon. J Bacteriol118:990–998
    [Google Scholar]
  42. Thomas D., Barbey R., Surdin-Kerjan Y.. 1993; Evolutionary relationships between yeast and bacterial homoserine dehydrogenases. FEBS Lett323:289–293[CrossRef]
    [Google Scholar]
  43. Tsay Y. H., Robinson G. W.. 1991; Cloning and characterization of ERG8, an essential gene of Saccharomyces cerevisiae that encodes phosphomevalonate kinase. Mol Cell Biol11:620–631
    [Google Scholar]
  44. Wierenga R. K., Terpstra P., Hol W. G. J.. 1986; Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol187:101–107[CrossRef]
    [Google Scholar]
  45. Wright F., Bibb M. J.. 1992; Codon usage in the G+C-rich Streptomyces genome. Gene113:55–65[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-5-1413
Loading
/content/journal/micro/10.1099/00221287-148-5-1413
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error