1887

Abstract

Phenyldecane supported growth and lipid accumulation of PD630 during cultivation under nitrogen-limiting conditions. The results of this study suggested that the hydrocarbon phenyldecane was degraded by monoterminal oxidation, followed by β-oxidation of the alkyl side-chain to phenylacetic acid, and by an additional degradative route for the oxidation of the latter to intermediates of the central metabolism. α-Oxidation of phenyldecanoic acid also occurred to some extent. Phenyldecanoic acid, the monoterminal oxidation product, was also utilized for the biosynthesis of a novel wax ester and novel triacylglycerols. The formation of the wax ester phenyldecylphenyldecanoate probably resulted from the condensation of phenyldecanoic acid and phenyldecanol, which were produced as metabolites during the catabolism of phenyldecane. Two types of triacylglycerol were detected in phenyldecane-grown cells of strain PD630. Triacylglycerols containing only odd- and even-numbered aliphatic fatty acids, as well as triacylglycerols in which one fatty acid was replaced by a phenyldecanoic acid residue, occurred. Other phenyl intermediates, such as phenylacetic acid, phenylpropionic acid, 4-hydroxyphenylpropionic acid, protocatechuate and homogentisic acid, were excreted into the medium during cultivation on phenyldecane. On the basis of the results obtained, pathways for the catabolism and assimilation of phenyldecane by PD630 are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-5-1407
2002-05-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/5/1481407a.html?itemId=/content/journal/micro/10.1099/00221287-148-5-1407&mimeType=html&fmt=ahah

References

  1. Alvarez H. M., Mayer F., Fabritius D., Steinbüchel A.. 1996; Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus PD630. Arch Microbiol165:377–386[CrossRef]
    [Google Scholar]
  2. Alvarez H. M., Kalscheuer R., Steinbüchel A.. 1997; Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett/Lipid9:239–246
    [Google Scholar]
  3. Alvarez H. M., Kalscheuer R., Steinbüchel A.. 2000; Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol54:218–223[CrossRef]
    [Google Scholar]
  4. Alvarez H. M., Souto M. F., Viale A., Pucci O. H.. 2001; Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. FEMS Microbiol Lett200:195–200[CrossRef]
    [Google Scholar]
  5. Brandl H., Gross R. A., Lenz R. W., Fuller R. C.. 1988; Pseudomonas oleovorans as a source of poly(hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol54:1977–1982
    [Google Scholar]
  6. Dahlqvist A., Lanman M., Banas A., Lee M., Sandager L., Ronne H., Stymne S., Stähl U.. 2000; Phosholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA12:6487–6492
    [Google Scholar]
  7. Finnerty W. R.. 1992; The biology and genetics of the genus Rhodococcus . Annu Rev Microbiol46:193–218[CrossRef]
    [Google Scholar]
  8. Frederickson J. K., Brockman F. J., Workman D. J., Li S. W., Stevens T. O.. 1991; Isolation and characterization of subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. Appl Environ Microbiol57:796–803
    [Google Scholar]
  9. Fritzsche K., Lenz R. W., Fuller R. C.. 1990; An unusual bacterial polyester with a phenyl pendant group. Macromol Chem191:1957–1965[CrossRef]
    [Google Scholar]
  10. Garcı́a B., Olivera E. R., Minabres B., Canedo L. M., Prieto M. A., Garcı́a J. L., Martı́nez M., Luengo J. M., Fernándes-Valverde M.. 1999; Novel biodegradable aromatic plastics from a bacterial source. J Biol Chem274:29228–29241[CrossRef]
    [Google Scholar]
  11. Gibson D. T., Subramanian V.. 1984; Microbial degradation of aromatic hydrocarbons. In Microbial Degradation of Aromatic Hydrocarbons pp181–242 Edited by Gibson D. T.. New York: Dekker;
    [Google Scholar]
  12. Olivera E. R., Minambres B., Garcı́a B., Muniz C., Morena M. A., Dı́az E., Garcı́a J. L., Luengo J. M., Ferrández A.. 1998; Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci USA95:6419–6424[CrossRef]
    [Google Scholar]
  13. Priefert H., Rabenhorst J., Steinbüchel A.. 1997; Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. J Bacteriol179:2595–2607
    [Google Scholar]
  14. Sariaslani F. S., Harper D. B., Higgins I. J.. 1974; Microbial degradation of hydrocarbons. Catabolism of 1-phenylalkanes by Nocardia salmonicolor . Biochem J140:31–45
    [Google Scholar]
  15. Schlegel H. G., Kaltwasser H., Gottschalk H.. 1961; Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol38:209–222[CrossRef]
    [Google Scholar]
  16. Sikkema J., De Bont J. A. M., Poolman B.. 1995; Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222
    [Google Scholar]
  17. Wagner-Dobler I., Bennasar A., Vancanneyt M., Strompl C., Brummer I., Eichner C., Grammel I., Moore E. R.. 1998; Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Appl Environ Microbiol64:3014–3022
    [Google Scholar]
  18. Wältermann M., Luftmann H., Baumeister D., Kalscheuer R., Steinbüchel A.. 2000; Rhodococcus opacus strain PD630 as a new source of high-value single cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiology146:1143–1149
    [Google Scholar]
  19. Warhust A. M., Fewson C. A.. 1994; Biotransformation catalyzed by the genus Rhodococcus . Crit Rev Biotechnol14:29–73[CrossRef]
    [Google Scholar]
  20. White L. G., Hawari J., Zhou E., Innis W. E., Greer H. W., Bourbonnière L.. 1998; Biodegradation of variable-chain-length alkanes at low temperatures by a psychotrophic Rhodococcus sp. Appl Environ Microbiol64:2578–2584
    [Google Scholar]
  21. Yakimov M. M., Giuliano L., Bruni V., Scarfi S., Golyshin P. N.. 1999; Characterization of antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol22:249–256
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-5-1407
Loading
/content/journal/micro/10.1099/00221287-148-5-1407
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error