Aspartyl protease from CECT 2413: cloning and characterization

The GenBank/EMBL/DDBJ accession number for the sequence reported in this paper is AJ276388.

Free

Abstract

A gene that encodes an extracellular aspartyl protease from CECT 2413, , has been isolated and characterized. Based on several conserved regions of other fungal acid proteases, primers were designed to amplify a probe that was used to isolate the gene from a genomic library of was an intronless ORF which encoded a polypeptide of 404 aa, including a prepropeptide at the N-terminal region formed by one putative signal peptide, a second peptide which could be cleaved to activate the enzyme and the active protease of calculated 367 kDa and pI 435. Northern experiments indicated that gene was pH regulated, repressed by ammonium, glucose and glycerol, and induced by organic nitrogen sources. The promoter possessed potential AreA, PacC and MYC sites for nitrogen, pH and mycoparasitism regulation respectively, but lacked potential CreA sites for carbon regulation. IEF and zymograms indicated that PAPA was a pepstatin-sensitive aspartyl protease of pI 45. Transformants from CECT 2413 cultivated in yeast extract-supplemented medium overexpressed and had a fourfold increase in protease activity compared to the wild-type, while transformants that overexpressed the β-1,6-glucanase gene . and had an additional 30% increase in β-1,6-glucanase activity compared to single transformants. Overexpression of both genes in ammonium-supplemented medium did not result in higher levels of PAPA and/or BGN16.2 proteins. These results indicated that both PAPA and β-1,6-glucanase undergo proteolysis in ammonium-supplemented medium but PAPA is not responsible for β-1,6-glucanase degradation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-5-1305
2002-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/5/1481305a.html?itemId=/content/journal/micro/10.1099/00221287-148-5-1305&mimeType=html&fmt=ahah

References

  1. Archer D. B. 2000; Filamentous fungi as microbial cell factories for food use. Curr Opin Biotechnol 11:478–483 [CrossRef]
    [Google Scholar]
  2. Archer D. B., Peberdy J. F. 1997; The molecular biology of secreted enzyme production by fungi. Crit Rev Biotechnol 17:273–306 [CrossRef]
    [Google Scholar]
  3. Asch D. K., Kinsey J. A. 1990; Relationship of the vector insert size to homologous integration during transformation of Neurospora crassa with the cloned am (GDH) gene. Mol Gen Genet 221:37–43 [CrossRef]
    [Google Scholar]
  4. Berka R. M., Ward M., Wilson L. J., Hayenga K. J., Kodama K. H., Carlomagno L. P., Thompson S. A. 1990; Molecular cloning and deletion of the gene encoding aspergillopepsin A from Aspergillus awamori . Gene 86:153–162 [CrossRef]
    [Google Scholar]
  5. Bussey H. 1988; Proteases and the processing of precursors to secreted proteins in yeast. Yeast 4:17–26 [CrossRef]
    [Google Scholar]
  6. Chen H., Hayn M., Esterbauer H. 1993; Three forms of cellobiohydrolase I from Trichoderma reesei . Biochem Mol Biol Int 30:901–910
    [Google Scholar]
  7. Cortés C., Gutiérrez A., Olmedo V., Inbar J., Chet I., Herrera-Estrella A. 1998; The expression of genes involved in parasitism by Trichoderma harzianum is triggered by a diffusible factor. Mol Gen Genet 260:218–225 [CrossRef]
    [Google Scholar]
  8. De la Cruz J., Pintor-Toro J. A., Benı́tez T., Llobell A. 1995; Purification and characterization of an endo-β-1,6-glucanase from Trichoderma harzianum that is related to mycoparasitism. J Bacteriol 177:1864–1871
    [Google Scholar]
  9. Delgado-Jarana J., Pintor-Toro J. A., Benı́tez T. 2000; Overproduction of β-1,6-glucanase in Trichoderma harzianum is controlled by extracellular acidic proteases and pH. Biochim Biophys Acta 1481289–296 [CrossRef]
    [Google Scholar]
  10. Dunn-Coleman N. S., Bloebaum P., Berka R. M. 13 other authors 1991; Commercial levels of chymosin production by Aspergillus. Biotechnology 9:976–981 [CrossRef]
    [Google Scholar]
  11. Dunne C. P. 1982; Relationship between extracellular proteases and the cellulase complex of Trichoderma reesei . In Enzyme Engineering vol. 6 pp 355–356 Edited by Chibata I. Fukui S., Wingard L. B. Jr New York: Plenum;
    [Google Scholar]
  12. Espeso E. A., Tilburn J., Arst H. N., Peñalva M. A. 1993; pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J 12:3947–3956
    [Google Scholar]
  13. Flores A., Chet I., Herrera-Estrella A. 1997; Improved biocontrol activity of Trichoderma harzianum by overexpression of the proteinase-encoding gene prb1 . Curr Genet 31:30–37 [CrossRef]
    [Google Scholar]
  14. Gente S., Durand-Poussereau N., Fèvre M. 1997; Controls of the expression of aspA , the aspartyl protease gene from Penicillium roqueforti . Mol Gen Genet 256:557–565 [CrossRef]
    [Google Scholar]
  15. Gente S., Billon-Grand G., Poussereau N., Fèvre M. 2001; Ambient alkaline pH prevents maturation but not synthesis of ASPA, the aspartyl protease from Penicillium roqueforti . Curr Genet 38:323–328 [CrossRef]
    [Google Scholar]
  16. Geremı́a R. A., Goldman G. H., Jacobs D., Ardiles W., Vila S. B., Van Montagu M., Herrera-Estrella A. 1993; Molecular characterization of the proteinase-encoding gene, prb1 , related to mycoparasitism by Trichoderma harzianum . Mol Microbiol 8:603–613 [CrossRef]
    [Google Scholar]
  17. Goldman G. H., Pellizzon C. H., Marins M., McInerney J. O., Goldman M. H. S. 1998; Trichoderma spp. genome and gene structure. In Trichoderma and Gliocladium pp 209–224 Edited by Harman G. E. Kubiceck C. P. London: Taylor & Francis;
    [Google Scholar]
  18. Haab D., Hagspiel K., Szakmary K., Kubicek C. P. 1990; Formation of the extracellular proteases from Trichoderma reesei QM 9414 involved in cellulase degradation. J Biotechnol 16:187–198 [CrossRef]
    [Google Scholar]
  19. Hagspiel K., Haab D., Kubicek C. P. 1989; Protease activity and proteolytic modification of cellulases from a Trichoderma reesei QM 9414 selectant. Appl Microbiol Biotechnol 32:61–67
    [Google Scholar]
  20. Harman G. E., Björkman T. 1998; Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In Trichoderma and Gliocladium pp 229–265 Edited by Harman G. E. Kubiceck C. P. London: Taylor & Francis;
    [Google Scholar]
  21. Herrera-Estrella A., Goldman G. H., Van Montagu M. 1990; High-efficiency transformation system for the biocontrol agents Trichoderma spp. Mol Microbiol 4:839–843 [CrossRef]
    [Google Scholar]
  22. Holwerda B. C., Rogers J. C. 1992; Purification and characterization of aleurain: a plant thiol protease functionally homologous to mammalian cathepsin H. Plant Physiol 99:848–855 [CrossRef]
    [Google Scholar]
  23. Jeenes D. J., MacKenzie D. A., Roberts I. N., Archer D. B. 1991; Heterologous protein production by filamentous fungi. Biotechnol Genet Eng Rev 9:327–367
    [Google Scholar]
  24. Kubicek-Pranz E. M., Gruber F., Kubicek C. P. 1991; Transformation of Trichoderma reesei with the cellobiohydrolase II gene as a means for obtaining increased cellulase production and specific activity. J Biotechnol 20:83–94 [CrossRef]
    [Google Scholar]
  25. Kuhls K., Lieckfeldt E., Samuels G. J., Kovacs W., Meyer W., Petrini O., Gams W., Borner T., Kubicek C. P. 1996; Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina . Proc Natl Acad Sci U S A 93:7755–7760 [CrossRef]
    [Google Scholar]
  26. Limón M. C., Lora J. M., Garcı́a I., De la Cruz J., Llobell A., Benı́tez T., Pintor-Toro J. A. 1995; Primary structure and expression pattern of the 33-kDa chitinase gene from the mycoparasitic fungus Trichoderma harzianum. Curr Genet 28:478–483 [CrossRef]
    [Google Scholar]
  27. Lora J. M., De la Cruz J., Benı́tez T., Llobell A., Pintor-Toro J. A. 1995; Molecular characterization and heterologous expression of an endo-β-1,6-glucanase gene from the mycoparasitic fungus Trichoderma harzianum . Mol Gen Genet 247:639–645 [CrossRef]
    [Google Scholar]
  28. Mach R. L., Schindler M., Kubicek C. P. 1994; Transformation of Trichoderma reesei based on hygromycin B resistance using homologous expression signals. Curr Genet 25:567–570 [CrossRef]
    [Google Scholar]
  29. Mäntylä A., Saarelainen R., Fagerström R., Suominen P., Nevalainen H. 1994; Cloning of the aspartic protease gene of Trichoderma reesei. In Abstracts of the 2nd European Conference on Fungal Genetics; Lunteren, The Netherlands, abstract B52 Lunteren; The Netherlands: Dept. Genetics; Wageningen:
    [Google Scholar]
  30. Mäntylä A., Paloheimo M., Suominen P. 1998; Industrial mutants and recombinant strains of Trichoderma reesei . In Trichoderma and Gliocladium pp 289–310 Edited by Harman G. E. Kubiceck C. P. London: Taylor & Francis;
    [Google Scholar]
  31. Margolles-Clark E., Hayes C. K., Harman G. E., Penttilä M. 1996; Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei . Appl Environ Microbiol 62:2145–2151
    [Google Scholar]
  32. Martı́nez-Pastor M. T., Marchler G., Schüller C., Marchler-Bauer A., Ruis H., Estruch F. 1996; The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J 15:2227–2235
    [Google Scholar]
  33. Moralejo F. J., Cardoza R. E., Gutiérrez S., Sisniega H., Faus I., Martı́n J. F. 2000; Overexpression and lack of degradation of thaumatin in an aspergillopepsin A-defective mutant of Aspergillus awamori containing an insertion in the pepA gene. Appl Microbiol Biotechnol 54:772–777 [CrossRef]
    [Google Scholar]
  34. Nelson N. J. 1957; Colorimetric analysis of sugars. Methods Enzymol 3:85–86
    [Google Scholar]
  35. Nyyssönen E., Penttilä M., Harkki A., Saloheimo A., Knowles J. K. C., Keränen S. 1993; Efficient production of antibody fragments by the filamentous fungus Trichoderma reesei . Biotechnology 11:591–595 [CrossRef]
    [Google Scholar]
  36. Penttilä M., Nevalainen H., Ratto M., Salminen E., Knowles J. 1987; A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei . Gene 61:155–164 [CrossRef]
    [Google Scholar]
  37. Pitts J. E. 1992; Crystallization by centrifugation. Nature 355:117
    [Google Scholar]
  38. Poussereau N., Creton S., Billon-Grand G., Rascle C., Fèvre M. 2001; Regulation of acp1 , encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum . Microbiology 147:717–726
    [Google Scholar]
  39. Ravagnani A., Gorfinkiel L., Langdon T., Diallinas G., Adjadj E., Demais S., Gorton D., Arst H. N., Scazzocchio C. 1997; Subtle hydrophobic interactions between the seventh residue of the zinc finger loop and the first base of an HGATAR sequence determine promoter-specific recognition by the Aspergillus nidulans GATA factor AreA. EMBO J 16:3974–3986 [CrossRef]
    [Google Scholar]
  40. Rawlings N. D., Barrett A. J. 1995; Families of aspartic peptidases, and those of unknown catalytic mechanism. Methods Enzymol 248:105–120
    [Google Scholar]
  41. Ronne H. 1995; Glucose repression in fungi. Trends Genet 11:12–17 [CrossRef]
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Sharon E., Bar-Eyal M., Chet I., Herrera-Estrella A., Kleifeld O., Spiegel Y. 2001; Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Biol Control 97. 687–693
  44. Somogyi M. 1952; Notes on sugar determination. J Biol Chem 195:19–23
    [Google Scholar]
  45. St Leger R. J., Joshi L., Roberts D. 1997; Adaptation of proteases and carbohydrases of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 143:1983–1992 [CrossRef]
    [Google Scholar]
  46. Suárez B., Rey M., Monte E., Llobell A. 2000; Purification and characterization of a protease, Pra1, from Trichoderma harzianum with affinity for fungal cell walls. In Abstracts of the 6th IOBC/WPRS-EFPP Biocontrol Workshop Sevilla, Spain: p 123 Seville: International Organization for Biological Control of Noxious Animals and Plants (IOBC);
    [Google Scholar]
  47. Tilburn J., Sarkar S., Widdick D. A., Espeso E. A., Orejas M., Mungroo J., Peñalva M. A., Arst H. N. 1995; The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–790
    [Google Scholar]
  48. van den Hombergh J. P. T. W., Sollewijn Gelpke M. D., van de Vondervoort P. J. I., Buxton F. P., Visser J. 1997a; Disruption of three acid proteases in Aspergillus niger : effects on protease spectrum, intracellular proteolysis and degradation of target proteins. Eur J Biochem 247:605–613 [CrossRef]
    [Google Scholar]
  49. van den Hombergh J. P. T. W., van de Vondervoort P. J. I., Fraissinet-Tachet L., Visser J. 1997b; Aspergillus as a host for heterologous protein production. Trends Biotechnol 15:256–263 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-5-1305
Loading
/content/journal/micro/10.1099/00221287-148-5-1305
Loading

Data & Media loading...

Most cited Most Cited RSS feed