1887

Abstract

The gene encoding trehalose-6-phosphate (T6P) phosphatase from has been cloned and disrupted in this organism. The / mutant did not accumulate trehalose but accumulated high levels of T6P. Disruption of the two copies of the gene did not abolish growth even at 42 °C, but decreased the growth rate. In the stationary phase, the / mutant aggregated, more than 50% of its cells became permeable to propidium iodide and a large amount of protein was found in the culture medium. Aggregation occurred only at pH values higher than 7 and was avoided by osmoprotectants; it was never observed during the exponential phase of growth. The mutant formed colonies with a smooth border on Spider medium. Mice inoculated with 15×10 c.f.u. of wild-type cells died after 8 days, while 80% of those inoculated with the same number of c.f.u. of the / mutant survived for at least 1 month. Reintroduction of the wild-type gene in the mutant abolished the phenotypes described. It is hypothesized that the accumulation of T6P interferes with the assembly of a normal cell wall.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-5-1281
2002-05-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/5/1481281a.html?itemId=/content/journal/micro/10.1099/00221287-148-5-1281&mimeType=html&fmt=ahah

References

  1. Alex, L. A., Korch, C., Selitrennikoff, C. P. & Simon, M. I. ( 1998; ). COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc Natl Acad Sci USA 95, 7069-7073.[CrossRef]
    [Google Scholar]
  2. Blázquez, M. A., Lagunas, R., Gancedo, C. & Gancedo, J. M. ( 1993; ). Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett 329, 51-54.[CrossRef]
    [Google Scholar]
  3. Blázquez, M. A., Stucka, R., Feldmann, H. & Gancedo, C. ( 1994a; ). Trehalose-6-P synthase is dispensable for growth on glucose but not for spore germination in Schizosaccharomyces pombe. J Bacteriol 176, 3895-3902.
    [Google Scholar]
  4. Blázquez, M. A., Gancedo, J. M. & Gancedo, C. ( 1994b; ). Use of Yarrowia lipolytica hexokinase for the quantitative determination of trehalose-6-phosphate. FEMS Microbiol Lett 121, 223-227.[CrossRef]
    [Google Scholar]
  5. Borgia, P. T., Miao, Y. & Dodge, C. L. ( 1996; ). The orlA gene from Aspergillus nidulans encodes a trehalose-6-phosphate phosphatase necessary for normal growth and chitin synthesis at elevated temperatures. Mol Microbiol 20, 1287-1296.[CrossRef]
    [Google Scholar]
  6. Bulawa, C. E., Miller, D. W., Henry, L. K. & Becker, J. M. ( 1995; ). Attenuated virulence of chitin-deficient mutants of Candida albicans. Proc Natl Acad Sci USA 92, 10570-10574.[CrossRef]
    [Google Scholar]
  7. Cabib, E. & Leloir, F. L. ( 1958; ). The biosynthesis of trehalose-6-phosphate. J Biol Chem 231, 259-275.
    [Google Scholar]
  8. Calera, J. A. & Calderone, R. ( 1999; ). Flocculation of hyphae is associated with a deletion in the putative CaHK1 two-component histidine kinase gene from Candida albicans. Microbiology 145, 1431-1442.[CrossRef]
    [Google Scholar]
  9. de Pauw, B. E. & Meunier, F. ( 1999; ). The challenge of invasive fungal infections. Chemotherapy 45, 1-14.
    [Google Scholar]
  10. De Virgilio, C., Bürckert, N., Bell, W., Jeno, P., Boller, T. & Wiemken, A. ( 1993; ). Disruption of TPS2, the gene encoding the 100-kDa subunit of trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212, 315-323.[CrossRef]
    [Google Scholar]
  11. Edwards, J. E. ( 1991; ). Invasive Candida infections. Evolution of a fungal pathogen. N Engl J Med 324, 1060-1062.[CrossRef]
    [Google Scholar]
  12. El Barkani, A., Kurzai, O., Fonzi, W. A., Ramon, A., Porta, A., Frosch, M. & Muhlschlegel, F. A. ( 2000; ). Dominant active alleles of RIM101(PPR2) bypass the pH restriction of filamentation of Candida albicans. Mol Cell Biol 20, 4635-4647.[CrossRef]
    [Google Scholar]
  13. Elliott, B., Haltiwanger, R. S. & Futcher, B. ( 1996; ). Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae. Genetics 144, 923-933.
    [Google Scholar]
  14. Fonzi, W. A. ( 1999; ). PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of beta-1,3- and beta-1,6-glucans. J Bacteriol 181, 7070-7079.
    [Google Scholar]
  15. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717-728.
    [Google Scholar]
  16. Franco, A., Soto, T., Vicente-Soler, J., Valero Guillen, P., Cansado, J. & Gacto, M. ( 2000; ). Characterization of tpp1 + as encoding a main trehalose-6-P phosphatase in the fission yeast Schizosaccharomyces pombe. J Bacteriol 182, 5880-5884.[CrossRef]
    [Google Scholar]
  17. François, J. M., Blázquez, M. A., Ariño, J. & Gancedo, C. ( 1997; ). Storage carbohydrates in the yeast Saccharomyces cerevisiae. In Yeast Sugar Metabolism , pp. 285-312. Edited by F. K. Zimmermann & K. D. Entian. Lancaster, Basel:Technomic Publishing.
  18. Gietz, D., St Jean, A., Woods, R. A. & Schiestl, R. H. ( 1992; ). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425.[CrossRef]
    [Google Scholar]
  19. Gietz, R. D. & Sugino, A. ( 1988; ). New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527-534.[CrossRef]
    [Google Scholar]
  20. Gillum, A. M., Tsay, E. Y. & Kirsch, D. R. ( 1984; ). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198, 179-182.[CrossRef]
    [Google Scholar]
  21. Gounalaki, N. & Thireos, G. ( 1994; ). Yap1, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response. EMBO J. 13, 4036-4041.
    [Google Scholar]
  22. Gow, N., Robbins, P. W., Lester, J. W., Brown, A. J., Fonzi, W. A., Chapman, T. & Kinsman, O. S. ( 1994; ). A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans. Proc Natl Acad Sci USA 91, 6216-6220.[CrossRef]
    [Google Scholar]
  23. Herbrecht, R., Letscher, V., Andres, E. & Cavalier, A. ( 1999; ). Safety and efficacy of amphotericin B colloidal dispersion. A review. Chemotherapy 45 (suppl. 1), 67–76.
    [Google Scholar]
  24. Herrero, A. B., López, M. C., Fernández-Lago, L. & Domı́nguez, A. C. ( 1999; ). Candida albicans and Yarrowia lipolytica as alternative models for analysing budding patterns and germ tube formation in dimorphic fungi. Microbiology 145, 2727-2737.
    [Google Scholar]
  25. Hill, J. E., Myers, A. M., Koerner, T. J. & Tzagoloff, A. ( 1986; ). Yeast/E. coli shuttle vectors with multiple unique restrictions sites. Yeast 2, 163-167.[CrossRef]
    [Google Scholar]
  26. Hoffman, C. S. & Winston, F. ( 1987; ). A ten-minutes DNA preparation from yeast efficiently releases autonomous plasmids for transformation of E. coli. Gene 57, 266-272.
    [Google Scholar]
  27. Hoyer, L. L., Scherer, S., Shatzman, A. R. & Livi, G. P. ( 1995; ). Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol 15, 39-54.[CrossRef]
    [Google Scholar]
  28. Kapitany, R. A. & Zebrowsky, E. J. ( 1973; ). A high resolution PAS staining for polyacrylamide gel electrophoresis. Anal Biochem 56, 361-369.[CrossRef]
    [Google Scholar]
  29. Kapteyn, J. C., Hoyer, L. L., Hecht, J. E., Muller, W. H., Andel, A., Verkleij, A. J., Makarow, M., Van Den Ende, H. & Klis, F. M. ( 2000; ). The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35, 601-611.
    [Google Scholar]
  30. Kapteyn, J. C., ter Riet, B., Vink, E., Blad, S., De Nobel, H., Van Den Ende, H. & Klis, F. M. ( 2001; ). Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39, 469-479.[CrossRef]
    [Google Scholar]
  31. Kobayashi, N. & McEntee, K. ( 1993; ). Identification of cis and trans components of a novel heat-shock stress regulatory pathway in Saccharomyces cerevisiae. Mol Cell Biol 13, 248-256.
    [Google Scholar]
  32. Kohler, G. A., White, T. C. & Agabian, N. ( 1997; ). Overexpression of a cloned IMP dehydrogenase gene from Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179, 2331-2338.
    [Google Scholar]
  33. Kurtz, M. B., Cortelyou, M. W. & Kirsch, D. R. ( 1986; ). Integrative transformation of Candida albicans using a cloned ADE2 gene. Mol Cell Biol 6, 142-149.
    [Google Scholar]
  34. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  35. Liu, H., Köhler, J. & Fink, G. R. ( 1994; ). Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266, 1723-1725.[CrossRef]
    [Google Scholar]
  36. Marchler, G., Schüller, C., Adam, G. & Ruis, H. ( 1993; ). A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12, 1997-2003.
    [Google Scholar]
  37. Martin, M. V. ( 1999; ). The use of fluoconazole and itraconazole in the treatment of Candida albicans infections: a review. J Antimicrob Chemother 44, 429-437.[CrossRef]
    [Google Scholar]
  38. Monk, B. & Perlin, D. S. ( 1994; ). Fungal plasma membrane proton pumps as promising new antifungal targets. Crit Rev Microbiol 20, 209-223.[CrossRef]
    [Google Scholar]
  39. Murphy, J. W. ( 1991; ). Mechanisms of natural resistance to human pathogenic fungi. Annu Rev Microbiol 45, 509-538.[CrossRef]
    [Google Scholar]
  40. Negredo, A., Monteoliva, L., Gil, C., Pla, J. & Nombela, C. ( 1997; ). Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans. Microbiology 143, 297-302.[CrossRef]
    [Google Scholar]
  41. Petit, T. & Gancedo, C. ( 1999; ). Molecular cloning and characterization of the gene HXK1 encoding the hexokinase from Yarrowia lipolytica. Yeast 15, 1573-1584.[CrossRef]
    [Google Scholar]
  42. Petit, T., Blázquez, M. A. & Gancedo, C. ( 1996; ). Schizosaccharomyces pombe possesses an unusual and a conventional hexokinase: biochemical and molecular characterization of both hexokinases. FEBS Lett 378, 185-189.[CrossRef]
    [Google Scholar]
  43. Ramon, A. M., Porta, A. & Fonzi, W. A. ( 1999; ). Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2. J Bacteriol 181, 7524-7530.
    [Google Scholar]
  44. Reinders, A., Bürckert, N., Hohmann, S., Thevelein, J. M., Boller, T., Wiemken, A. & De Virgilio, C. ( 1997; ). Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 24, 687-695.[CrossRef]
    [Google Scholar]
  45. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  46. Sarthy, A. V., McGonigal, T., Coen, M., Frost, D. J., Meulbroek, J. A. & Goldman, R. C. ( 1997; ). Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-β-glucosyltransferase. Microbiology 143, 367-376.[CrossRef]
    [Google Scholar]
  47. Schwartz, D. S. & Larsh, H. W. ( 1980; ). An effective medium for the selective growth of yeast or mycelial forms of Candida albicans: biochemical aspects of the two forms. Mycopathologia 17, 67-75.
    [Google Scholar]
  48. Stratford, M. ( 1989; ). Yeast flocculation: calcium specificity. Yeast 5, 487-496.[CrossRef]
    [Google Scholar]
  49. Van Laere, A. ( 1989; ). Trehalose, reserve and/or stress protectant? FEMS Microbiol Rev 63, 201-210.
    [Google Scholar]
  50. Varela, J. C. S., Praekelt, U. M., Meacock, P. A., Planta, R. J. & Mager, W. H. ( 1995; ). The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol 15, 6232-6245.
    [Google Scholar]
  51. Verduyn Lunel, F. M., Meis, J. F. & Voss, A. ( 1999; ). Nosocomial fungal infections: candidemia. Diagn Microbiol Infect Dis 34, 213-220.[CrossRef]
    [Google Scholar]
  52. Werner-Washburne, M., Braun, E. L., Crawford, M. E. & Peck, V. M. ( 1996; ). Stationary phase in Saccharomyces cerevisiae. Mol Microbiol 19, 1159-1166.[CrossRef]
    [Google Scholar]
  53. Wright, R., Basson, M., D’Ari, L. & Rine, J. ( 1988; ). Increased amounts of HMG-CoA reductase induce ‘karmellae’: a proliferation of stacked membrane pairs surrounding the yeast nucleus. J Cell Biol 107, 101-114.[CrossRef]
    [Google Scholar]
  54. Zaragoza, O., Blázquez, M. A. & Gancedo, C. ( 1998; ). Disruption of the Candida albicans TPS1 gene encoding trehalose-6-P synthase impairs formation of hyphae and decreases infectivity. J Bacteriol 180, 3809-3815.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-5-1281
Loading
/content/journal/micro/10.1099/00221287-148-5-1281
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error