1887

Abstract

The complete 31754 bp genome of bIL170, a virulent bacteriophage of belonging to the 936 group, was analysed. Sixty-four ORFs were predicted and the function of 16 of them was assigned by significant homology to proteins in databases. Three putative homing endonucleases of the HNH family were found in the early region. An HNH endonuclease with zinc-binding motif was identified in the late cluster, potentially being part of the same functional module as terminase. Three putative structural proteins were analysed in detail and show interesting features among dairy phages. Notably, gpl12 (putative fibre) and gpl20 (putative baseplate protein) of bIL170 are related by at least one of their domains to a number of multi-domain proteins encoded by lactococcal or streptococcal phages. A 110- to 150-aa-long hypervariable domain flanked by two conserved motifs of about 20 aa was identified. The analysis presented here supports the participation of some of these proteins in host-range determination and suggests that specific adsorption to the host may involve a complex multi-component system. Divergences in the genome of phages of the 936 group, that may have important biological properties, were noted. Insertions/deletions of units of one or two ORFs were the main source of divergence in the early clusters of the two entirely sequenced phages, bIL170 and sk1. An exchange of fragments probably affected the regions containing the putative origin of replication. It led to the absence in bIL170 of the direct repeats recognized in sk1 and to the presence of different ORFs in the region. Shuffling of protein domains affected the endolysin (putative cell-wall binding part), as well as gpl12 and gpl20.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-985
2002-04-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1480985a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-985&mimeType=html&fmt=ahah

References

  1. Altermann, E., Klein, J. R. & Henrich, B. ( 1999; ). Primary structure and features of the genome of the Lactobacillus gasseri temperate bacteriophage phi adh. Gene 236, 333-346.[CrossRef]
    [Google Scholar]
  2. Alvarez, M. A., Herrero, M. & Suarez, J. E. ( 1998; ). The site-specific recombination system of the Lactobacillus species bacteriophage A2 integrates in Gram-positive and Gram-negative bacteria. Virology 250, 185-193.[CrossRef]
    [Google Scholar]
  3. Aravind, L., Makarova, K. S. & Koonin, E. V. ( 2000; ). Survey and summary. Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res 28, 3417-3432.[CrossRef]
    [Google Scholar]
  4. Bidnenko, E., Ehrlich, S. D. & Chopin, M. C. ( 1995; ). Phage operon involved in sensitivity to the Lactococcus lactis abortive infection mechanism AbiD1. J Bacteriol 177, 3824-3829.
    [Google Scholar]
  5. Bidnenko, E., Ehrlich, S. D. & Chopin, M. C. ( 1998; ). Lactococcus lactis phage operon coding for an endonuclease homologous to RuvC. Mol Microbiol 28, 823-834.
    [Google Scholar]
  6. Blackburn, N. T. & Clarke, A. J. ( 2001; ). Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol 52, 78-84.[CrossRef]
    [Google Scholar]
  7. Bolotin, A., Mauger, S., Malarme, K., Ehrlich, S. D. & Sorokin, A. ( 1999; ). Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie Leeuwenhoek 76, 27-76.[CrossRef]
    [Google Scholar]
  8. Borodovsky, M. & McIninch, J. D. ( 1993; ). GeneMark: parallel gene recognition for both DNA strands. Comput Chem 17, 123-133.[CrossRef]
    [Google Scholar]
  9. Bouchard, J. D. & Moineau, S. ( 2000; ). Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain. Virology 270, 65-75.[CrossRef]
    [Google Scholar]
  10. Boyce, J. D., Davidson, B. E. & Hillier, A. J. ( 1995; ). Spontaneous deletion mutants of the Lactococcus lactis temperate bacteriophage BK5-T and localization of the BK5-T attP site. Appl Environ Microbiol 61, 4105-4109.
    [Google Scholar]
  11. Breuner, A., Brondsted, L. & Hammer, K. ( 1999; ). Novel organization of genes involved in prophage excision identified in the temperate lactococcal bacteriophage TP901-1. J Bacteriol 181, 7291-7297.
    [Google Scholar]
  12. Brondsted, L., Ostergaard, S., Pedersen, M., Hammer, K. & Vogensen, F. K. ( 2001; ). Analysis of the complete DNA sequence of the temperate bacteriophage TP901-1: evolution, structure, and genome organization of lactococcal bacteriophages. Virology 283, 93-109.[CrossRef]
    [Google Scholar]
  13. Brussow, H. & Desiere, F. ( 2001; ). Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 39, 213-223.[CrossRef]
    [Google Scholar]
  14. Casjens, S., Hatfull, G. & Hendrix, R. ( 1992; ). Evolution of dsDNA tailed bacteriophage genomes. Semin Virol 3, 383-397.
    [Google Scholar]
  15. Chandry, P. S., Moore, S. C., Boyce, J. D., Davidson, B. E. & Hillier, A. J. ( 1997; ). Analysis of the DNA sequence, gene expression, origin of replication and modular structure of the Lactococcus lactis lytic bacteriophage sk1. Mol Microbiol 26, 49-64.[CrossRef]
    [Google Scholar]
  16. Chevalier, B. S. & Stoddard, B. L. ( 2001; ). Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29, 3757-3774.[CrossRef]
    [Google Scholar]
  17. Chopin, A., Bolotin, A., Sorokin, A., Ehrlich, S. D. & Chopin, M. C. ( 2001; ). Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations. Nucleic Acids Res 29, 644-651.[CrossRef]
    [Google Scholar]
  18. Christiansen, B., Brondsted, L., Vogensen, F. K. & Hammer, K. ( 1996; ). A resolvase-like protein is required for the site-specific integration of the temperate lactococcal bacteriophage TP901-1. J Bacteriol 178, 5164-5173.
    [Google Scholar]
  19. Chung, D. K., Kim, J. H. & Batt, C. A. ( 1991; ). Cloning and nucleotide sequence of the major capsid protein from Lactococcus lactis ssp. cremoris bacteriophage F4-1. Gene 101, 121-125.[CrossRef]
    [Google Scholar]
  20. Conley, M. P. & Wood, W. B. ( 1975; ). Bacteriophage T4 whiskers: a rudimentary environment-sensing device. Proc Natl Acad Sci USA 72, 3701-3705.[CrossRef]
    [Google Scholar]
  21. Dalgaard, J. Z., Klar, A. J., Moser, M. J., Holley, W. R., Chatterjee, A. & Mian, I. S. ( 1997; ). Statistical modelling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res 25, 4626-4638.[CrossRef]
    [Google Scholar]
  22. Desiere, F., Lucchini, S. & Brussow, H. ( 1998; ). Evolution of Streptococcus thermophilus bacteriophage genomes by modular exchanges followed by point mutations and small deletions and insertions. Virology 241, 345-356.[CrossRef]
    [Google Scholar]
  23. Desiere, F., Pridmore, R. D. & Brussow, H. ( 2000; ). Comparative genomics of the late gene cluster from Lactobacillus phages. Virology 275, 294-305.[CrossRef]
    [Google Scholar]
  24. Desiere, F., Mahanivong, C., Hillier, A. J., Chandry, P. S., Davidson, B. E. & Brussow, H. ( 2001; ). Comparative genomics of lactococcal phages: insight from the complete genome sequence of Lactococcus lactis phage BK5-T. Virology 283, 240-252.[CrossRef]
    [Google Scholar]
  25. Duplessis, M. & Moineau, S. ( 2001; ). Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Mol Microbiol 41, 325-336.[CrossRef]
    [Google Scholar]
  26. Fastrez, J. ( 1996; ). Phage lysozymes. EXS 75, 35-64.
    [Google Scholar]
  27. Foley, S., Bruttin, A. & Brussow, H. ( 2000; ). Widespread distribution of a group I intron and its three deletion derivatives in the lysin gene of Streptococcus thermophilus bacteriophages. J Virol 74, 611-618.[CrossRef]
    [Google Scholar]
  28. Forde, A. & Fitzgerald, G. F. ( 1999; ). Bacteriophage defence systems in lactic acid bacteria. Antonie Leeuwenhoek 76, 89-113.[CrossRef]
    [Google Scholar]
  29. Garcia, P., Garcia, J. L., Garcia, E., Sanchez-Puelles, J. M. & Lopez, R. ( 1990; ). Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene 86, 81-88.[CrossRef]
    [Google Scholar]
  30. Garcia, P., Alonso, J. C. & Suarez, J. E. ( 1997; ). Molecular analysis of the cos region of the Lactobacillus casei bacteriophage A2: gene product 3, gp3, specifically binds to its downstream cos region. Mol Microbiol 23, 505-514.[CrossRef]
    [Google Scholar]
  31. Garcia, P., Ladero, V., Alonso, J. C. & Suarez, J. E. ( 1999; ). Co-operative interaction of CI protein regulates lysogeny of Lactobacillus casei by bacteriophage A2. J Virol 73, 3920-3929.
    [Google Scholar]
  32. Golz, S. & Kemper, B. ( 1999; ). Association of holliday-structure resolving endonuclease VII with gp20 from the packaging machine of phage T4. J Mol Biol 285, 1131-1144.[CrossRef]
    [Google Scholar]
  33. Goodrich-Blair, H. & Shub, D. A. ( 1994; ). The DNA polymerase genes of several HMU-bacteriophages have similar group I introns with highly divergent open reading frames. Nucleic Acids Res 22, 3715-3721.[CrossRef]
    [Google Scholar]
  34. Goodrich-Blair, H. & Shub, D. A. ( 1996; ). Beyond homing: competition between intron endonucleases confers a selective advantage on flanking genetic markers. Cell 84, 211-221.[CrossRef]
    [Google Scholar]
  35. Gorbalenya, A. E. ( 1994; ). Self-splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Sci 3, 1117-1120.[CrossRef]
    [Google Scholar]
  36. Hendrix, R. W. & Duda, R. L. ( 1992; ). Bacteriophage lambda PaPa: not the mother of all lambda phages. Science 258, 1145-1148.[CrossRef]
    [Google Scholar]
  37. Hendrix, R. W., Smith, M. C. M., Burns, R. N., Ford, M. E. & Hatfull, G. F. ( 1999; ). Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci USA 96, 2192-2197.[CrossRef]
    [Google Scholar]
  38. Henrich, B., Binishofer, B. & Blasi, U. ( 1995; ). Primary structure and functional analysis of the lysis genes of Lactobacillus gasseri bacteriophage phi adh. J Bacteriol 177, 723-732.
    [Google Scholar]
  39. Jarvis, A. W., Fitzgerald, G. F., Mata, M., Mercenier, A., Neve, H., Powell, I. B., Ronda, C., Saxelin, M. & Teuber, M. ( 1991; ). Species and type phages of lactococcal bacteriophages. Intervirology 32, 2-9.
    [Google Scholar]
  40. Johnsen, M. G., Neve, H., Vogensen, F. K. & Hammer, K. ( 1995; ). Virion positions and relationships of lactococcal temperate bacteriophage TP901-1 proteins. Virology 212, 595-606.[CrossRef]
    [Google Scholar]
  41. Johnsen, M. G., Appel, K. F., Madsen, P. L., Vogensen, F. K., Hammer, K. & Arnau, J. ( 1996; ). A genomic region of lactococcal temperate bacteriophage TP901-1 encoding major virion proteins. Virology 218, 306-315.[CrossRef]
    [Google Scholar]
  42. Kakikawa, M., Oki, M., Tadokoro, H., Nakamura, S., Taketo, A. & Kodaira, K. ( 1996; ). Cloning and nucleotide sequence of the major capsid proteins of Lactobacillus bacteriophage phi g1e. Gene 175, 157-165.[CrossRef]
    [Google Scholar]
  43. Katsura, I. & Hendrix, R. W. ( 1984; ). Length determination in bacteriophage lambda tails. Cell 39, 691-698.[CrossRef]
    [Google Scholar]
  44. Kim, J. H. & Batt, C. A. ( 1991a; ). Molecular characterization of a Lactococcus lactis bacteriophage F4-1. Food Microbiology 8, 15-26.[CrossRef]
    [Google Scholar]
  45. Kim, J. H. & Batt, C. A. ( 1991b; ). Nucleotide sequence and deletion analysis of a gene coding for a structural protein of Lactococcus lactis bacteriophage F4-1. Food Microbiol 8, 27-36.[CrossRef]
    [Google Scholar]
  46. Kodaira, K. I., Oki, M., Kakikawa, M., Watanabe, N., Hirakawa, M., Yamada, K. & Taketo, A. ( 1997; ). Genome structure of the Lactobacillus temperate phage phi g1e: the whole genome sequence and the putative promoter/repressor system. Gene 187, 45-53.[CrossRef]
    [Google Scholar]
  47. Lakshmidevi, G., Davidson, B. E. & Hillier, A. J. ( 1990; ). Molecular characterization of promoters of the Lactococcus lactis subsp. cremoris temperate bacteriophage BK5-T and identification of a phage gene implicated in the regulation of promoter activity. Appl Environ Microbiol 56, 934-942.
    [Google Scholar]
  48. Lazarevic, V., Soldo, B., Dusterhoft, A., Hilbert, H., Mauel, C. & Karamata, D. ( 1998; ). Introns and intein coding sequence in the ribonucleotide reductase genes of Bacillus subtilis temperate bacteriophage SPbeta. Proc Natl Acad Sci USA 95, 1692-1697.[CrossRef]
    [Google Scholar]
  49. Lehnherr, H., Hansen, A. M. & Ilyina, T. ( 1998; ). Penetration of the bacterial cell wall: a family of lytic transglycosylases in bacteriophages and conjugative plasmids. Mol Microbiol 30, 454-457.[CrossRef]
    [Google Scholar]
  50. Lobry, J. R. ( 1996; ). Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13, 660-665.[CrossRef]
    [Google Scholar]
  51. Loessner, M. J., Gaeng, S., Wendlinger, G., Maier, S. K. & Scherer, S. ( 1998; ). The two-component lysis system of Staphylococcus aureus bacteriophage Twort: a large TTG-start holin and an associated amidase endolysin. FEMS Microbiol Lett 162, 265-274.[CrossRef]
    [Google Scholar]
  52. Lubbers, M. W., Waterfield, N. R., Beresford, T. P., Le Page, R. W. & Jarvis, A. W. ( 1995; ). Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Appl Environ Microbiol 61, 4348-4356.
    [Google Scholar]
  53. Lucchini, S., Desiere, F. & Brussow, H. ( 1998; ). The structural gene module in Streptococcus thermophilus bacteriophage phi Sfi11 shows a hierarchy of relatedness to Siphoviridae from a wide range of bacterial hosts. Virology 246, 63-73.[CrossRef]
    [Google Scholar]
  54. Lucchini, S., Desiere, F. & Brussow, H. ( 1999; ). Comparative genomics of Streptococcus thermophilus phage species supports a modular evolution theory. J Virol 73, 8647-8656.
    [Google Scholar]
  55. Ludwig, W., Seewaldt, E., Kilpper-Balz, R., Schleifer, K. H., Magrum, L., Woese, C. R., Fox, G. E. & Stackebrandt, E. ( 1985; ). The phylogenetic position of Streptococcus and Enterococcus. J Gen Microbiol 131, 543-551.
    [Google Scholar]
  56. Madsen, P. L. & Hammer, K. ( 1998; ). Temporal transcription of the lactococcal temperate phage TP901-1 and DNA sequence of the early promoter region. Microbiology 144, 2203-2215.[CrossRef]
    [Google Scholar]
  57. Mahanivong, C., Boyce, J. D., Davidson, B. E. & Hillier, A. J. ( 2001; ). Sequence analysis and molecular characterization of the Lactococcus lactis temperate bacteriophage BK5-T. Appl Environ Microbiol 67, 3564-3576.[CrossRef]
    [Google Scholar]
  58. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  59. Mikkonen, M. & Alatossava, T. ( 1994; ). Characterization of the genome region encoding structural proteins of Lactobacillus delbrueckii subsp. lactis bacteriophage LL-H. Gene 151, 53-59.[CrossRef]
    [Google Scholar]
  60. Mikkonen, M. & Alatossava, T. ( 1995; ). A group I intron in the terminase gene of Lactobacillus delbrueckii subsp. lactis phage LL-H. Microbiology 141, 2183-2190.[CrossRef]
    [Google Scholar]
  61. Moak, M. & Molineux, I. J. ( 2000; ). Role of the Gp16 lytic transglycosylase motif in bacteriophage T7 virions at the initiation of infection. Mol Microbiol 37, 345-355.[CrossRef]
    [Google Scholar]
  62. Montag, D., Hashemolhosseini, S. & Henning, U. ( 1990; ). Receptor-recognizing proteins of T-even type bacteriophages: the receptor-recognizing area of proteins 37 of phages T4 TuIa and TuIb. J Mol Biol 216, 327-334.[CrossRef]
    [Google Scholar]
  63. Moscoso, M. & Suarez, J. E. ( 2000; ). Characterization of the DNA replication module of bacteriophage A2 and use of its origin of replication as a defence against infection during milk fermentation by Lactobacillus casei. Virology 273, 101-111.[CrossRef]
    [Google Scholar]
  64. Mrazek, J. & Karlin, S. ( 1998; ). Strand compositional asymmetry in bacterial and large viral genomes. Proc Natl Acad Sci USA 95, 3720-3725.[CrossRef]
    [Google Scholar]
  65. Nauta, A., van Sinderen, D., Karsens, H., Smit, E., Venema, G. & Kok, J. ( 1996; ). Inducible gene expression mediated by a repressor-operator system isolated from Lactococcus lactis bacteriophage r1t. Mol Microbiol 19, 1331-1341.[CrossRef]
    [Google Scholar]
  66. Neve, H., Zenz, K. I., Desiere, F., Koch, A., Heller, K. J. & Brussow, H. ( 1998; ). Comparison of the lysogeny modules from the temperate Streptococcus thermophilus bacteriophages TP-J34 and Sfi21: implications for the modular theory of phage evolution. Virology 241, 61-72.[CrossRef]
    [Google Scholar]
  67. Oki, M., Kakikawa, M., Yamada, K., Taketo, A. & Kodaira, K. I. ( 1996; ). Cloning, sequence analysis, and expression of the genes encoding lytic functions of bacteriophage phi g1e. Gene 176, 215-223.[CrossRef]
    [Google Scholar]
  68. Oki, M., Kakikawa, M., Nakamura, S., Yamamura, E. T., Watanabe, K., Sasamoto, M., Taketo, A. & Kodaira, K. ( 1997; ). Functional and structural features of the holin HOL protein of the Lactobacillus plantarum phage phi gle: analysis in Escherichia coli system. Gene 197, 137-145.[CrossRef]
    [Google Scholar]
  69. Ostergaard, S., Brondsted, L. & Vogensen, F. K. ( 2001; ). Identification of a replication protein and repeats essential for DNA replication of the temperate lactococcal bacteriophage TP901-1. Appl Environ Microbiol 67, 774-781.[CrossRef]
    [Google Scholar]
  70. Parreira, R. (1996). Caractérisation du mécanisme de résistance aux phages par infection abortive codé par le gène abiB de Lactococcus lactis subsp. lactis. PhD thesis: Université Paris XI.
  71. Parreira, R., Ehrlich, S. D. & Chopin, M. C. ( 1996a; ). Dramatic decay of phage transcripts in lactococcal cells carrying the abortive infection determinant AbiB. Mol Microbiol 19, 221-230.[CrossRef]
    [Google Scholar]
  72. Parreira, R., Valyasevi, R., Lerayer, A. L., Ehrlich, S. D. & Chopin, M. C. ( 1996b; ). Gene organization and transcription of a late-expressed region of a Lactococcus lactis phage. J Bacteriol 178, 6158-6165.
    [Google Scholar]
  73. Pedersen, M., Ostergaard, S., Bresciani, J. & Vogensen, F. K. ( 2000; ). Mutational analysis of two structural genes of the temperate lactococcal bacteriophage TP901-1 involved in tail length determination and baseplate assembly. Virology 276, 315-328.[CrossRef]
    [Google Scholar]
  74. Platteeuw, C. & de Vos, W. M. ( 1992; ). Location, characterization and expression of lytic enzyme-encoding gene, lytA, of Lactococcus lactis bacteriophage phi US3. Gene 118, 115-120.[CrossRef]
    [Google Scholar]
  75. Rydman, P. S. & Bamford, D. H. ( 2000; ). Bacteriophage PRD1 DNA entry uses a viral membrane-associated transglycosylase activity. Mol Microbiol 37, 356-363.[CrossRef]
    [Google Scholar]
  76. Schouler, C., Ehrlich, S. D. & Chopin, M. C. ( 1994; ). Sequence and organization of the lactococcal prolate-headed bIL67 phage genome. Microbiology 140, 3061-3069.[CrossRef]
    [Google Scholar]
  77. Sharples, G. J., Corbett, L. M. & Graham, I. R. ( 1998; ). Lambda Rap protein is a structure-specific endonuclease involved in phage recombination. Proc Natl Acad Sci USA 95, 13507-13512.[CrossRef]
    [Google Scholar]
  78. Sheehan, M. M., Garcia, J. L., Lopez, R. & Garcia, P. ( 1996; ). Analysis of the catalytic domain of the lysin of the lactococcal bacteriophage Tuc2009 by chimeric gene assembling. FEMS Microbiol Lett 140, 23-28.[CrossRef]
    [Google Scholar]
  79. Sheehan, M. M., Garcia, J. L., Lopez, R. & Garcia, P. ( 1997; ). The lytic enzyme of the pneumococcal phage Dp-1: a chimeric lysin of intergeneric origin. Mol Microbiol 25, 717-725.[CrossRef]
    [Google Scholar]
  80. Sheehan, M. M., Stanley, E., Fitzgerald, G. F. & van Sinderen, D. ( 1999; ). Identification and characterization of a lysis module present in a large proportion of bacteriophages infecting Streptococcus thermophilus. Appl Environ Microbiol 65, 569-577.
    [Google Scholar]
  81. Shub, D. A., Goodrich-Blair, H. & Eddy, S. R. ( 1994; ). Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends Biochem Sci 19, 402-404.[CrossRef]
    [Google Scholar]
  82. Smith, M. C. M., Burns, R. N., Wilson, S. E. & Gregory, M. A. ( 1999; ). The complete genome sequence of the Streptomyces temperate phage phi C31: evolutionary relationships to other viruses. Nucleic Acids Res 27, 2145-2155.[CrossRef]
    [Google Scholar]
  83. Staden, R. ( 1996; ). The Staden sequence analysis package. Mol Biotechnol 5, 233-241.[CrossRef]
    [Google Scholar]
  84. Stanley, E., Fitzgerald, G. F., Le Marrec, C., Fayard, B. & van Sinderen, D. ( 1997; ). Sequence analysis and characterization of ϕO1205, a temperate bacteriophage infecting Streptococcus thermophilus CNRZ1205. Microbiology 143, 3417-3429.[CrossRef]
    [Google Scholar]
  85. Tetart, F., Desplats, C. & Krisch, H. M. ( 1998; ). Genome plasticity in the distal tail fibre locus of the T-even bacteriophage: recombination between conserved motifs swaps adhesin specificity. J Mol Biol 282, 543-556.[CrossRef]
    [Google Scholar]
  86. Tremblay, D. M. & Moineau, S. ( 1999; ). Complete genomic sequence of the lytic bacteriophage DT1 of Streptococcus thermophilus. Virology 255, 63-76.[CrossRef]
    [Google Scholar]
  87. Van Sinderen, D., Karsens, H., Kok, J., Terpstra, P., Ruiters, M. H., Venema, G. & Nauta, A. ( 1996; ). Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage r1t. Mol Microbiol 19, 1343-1355.[CrossRef]
    [Google Scholar]
  88. Vasala, A., Valkkila, M., Caldentey, J. & Alatossava, T. ( 1995; ). Genetic and biochemical characterization of the Lactobacillus delbrueckii subsp. lactis bacteriophage LL-H lysin. Appl Environ Microbiol 61, 4004-4011.
    [Google Scholar]
  89. Walker, S. A. & Klaenhammer, T. R. ( 1998; ). Molecular characterization of a phage-inducible middle promoter and its transcriptional activator from the lactococcal bacteriophage phi31. J Bacteriol 180, 921-931.
    [Google Scholar]
  90. Wang, X., Mani, N., Pattee, P. A., Wilkinson, B. J. & Jayaswal, R. K. ( 1992; ). Analysis of a peptidoglycan hydrolase gene from Staphylococcus aureus NCTC 8325. J Bacteriol 174, 6303-6306.
    [Google Scholar]
  91. Waterfield, N. R., Lubbers, M. W., Polzin, K. M., Le Page, R. W. & Jarvis, A. W. ( 1996; ). An origin of DNA replication from Lactococcus lactis bacteriophage c2. Appl Environ Microbiol 62, 1452-1453.
    [Google Scholar]
  92. Wood, W. B., Eiserling, F. A. & Crowther, R. A. ( 1994; ). Long tail fibers: genes, proteins, structure and assembly. In Molecular Biology of Bacteriophage T4 , pp. 282-290. Edited by J. D. Karan. Washington, DC:American Society for Microbiology.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-985
Loading
/content/journal/micro/10.1099/00221287-148-4-985
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error