1887

Abstract

ABP-118, a small heat-stable bacteriocin produced by subsp. UCC118, a strain isolated from the ileal–caecal region of the human gastrointestinal tract, was purified to homogeneity. Using reverse genetics, a DNA fragment specifying part of ABP-118 was identified on a 10769 bp chromosomal region. Analysis of this region revealed that ABP-118 was a Class IIb two-peptide bacteriocin composed of Abp118α, which exhibited the antimicrobial activity, and Abp118β, which enhanced the antimicrobial activity. The gene conferring strain UCC118 immunity to the action of ABP-118, , was identified downstream of the β gene. Located further downstream of β, several ORFs were identified whose deduced proteins resembled those of proteins involved in bacteriocin regulation and secretion. Heterologous expression of ABP-118 was achieved in , and . In addition, the locus encoded an inducing peptide, AbpIP, which was shown to play a role in the regulation of ABP-118 production. This novel bacteriocin is, to the authors’ knowledge, the first to be isolated from a known human probiotic bacterium and to be characterized at the genetic level.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-973
2002-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1480973a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-973&mimeType=html&fmt=ahah

References

  1. Allison G. E., Fremaux C., Klaenhammer T. R. 1994; Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J Bacteriol 176:2235–2241
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Anderson D. G., McKay L. L. 1983; Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol 46:549–552
    [Google Scholar]
  4. Aukurst T., Blom H. 1992; Transformation of Lactobacillus strains used in meat and vegetable fermentations. Food Res Int 25:253–261 [CrossRef]
    [Google Scholar]
  5. Axelsson L., Holck A. 1995; The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 177:2125–2137
    [Google Scholar]
  6. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [CrossRef]
    [Google Scholar]
  7. Brurberg M. B., Nes I. F., Eijsink V. G. 1997; Pheromone-induced production of antimicrobial peptides in Lactobacillus . Mol Microbiol 26:347–360 [CrossRef]
    [Google Scholar]
  8. Chambers S. P., Prior S. E., Barstow D. A., Minton N. P. 1988; The pMTL nic -cloning vectors I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68:139–149 [CrossRef]
    [Google Scholar]
  9. Cornwell G. G. d., Sletten K., Johansson B., Westermark P. 1988; Evidence that the amyloid fibril protein in senile systemic amyloidosis is derived from normal prealbumin. Biochem Biophys Res Commun 154:648–653 [CrossRef]
    [Google Scholar]
  10. de Ruyter P. G., Kuipers O. P., de Vos W. M. 1996; Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667
    [Google Scholar]
  11. de Saizieu A., Gardes C., Flint N., Wagner C., Kamber M., Mitchell T. J., Keck W., Amrein K. E., Lange R. 2000; Microarray-based identification of a novel Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J Bacteriol 182:4696–4703 [CrossRef]
    [Google Scholar]
  12. Diep D. B., Håvarstein L. S., Nissen-Meyer J., Nes I. F. 1994; The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr -like regulatory system. Appl Environ Microbiol 60:160–166
    [Google Scholar]
  13. Diep D. B., Axelsson L., Grefsli C., Nes I. F. 2000; The synthesis of the bacteriocin sakacin A is a temperature-sensitive process regulated by a pheromone peptide through a three-component regulatory system. Microbiology 146:2155–2160
    [Google Scholar]
  14. Dunne C., Murphy L., Flynn S. 12 other authors 1999; Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie Leeuwenhoek 76:279–292 [CrossRef]
    [Google Scholar]
  15. Ehrmann M. A., Remiger A., Eijsink V. G. H., Vogel R. F. 2000; A gene cluster encoding plantaricin 1.25 and other bacteriocin-like peptides in Lactobacillus plantarum TMW1.25. Biochim Biophys Acta 1490:355–361 [CrossRef]
    [Google Scholar]
  16. Ennahar S., Sashihara T., Sonomoto K., Ishizaki A. 2000; Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106 [CrossRef]
    [Google Scholar]
  17. Fleury Y., Dayem M. A., Montagne J. J., Chaboisseau E., Le Caer J. P., Nicolas P., Delfour A. 1996; Covalent structure, synthesis, and structure–function studies of mesentericin Y 105(37), a defensive peptide from Gram-positive bacteria Leuconostoc mesenteroides . J Biol Chem 271:14421–14429 [CrossRef]
    [Google Scholar]
  18. Franz C. M. A. P, van Belkum M. J., Worobo R. W., Vederas J. C., Stiles M. E. 2000; Characterization of the genetic locus responsible for production and immunity of carnobacteriocin A: the immunity gene confers cross-protection to enterocin B. Microbiology 146:621–631
    [Google Scholar]
  19. Fykse E. M., Sletten K., Husby G., Cornwell G. G. d. 1988; The primary structure of the variable region of an immunoglobin IV light-chain amyloid-fibril protein (AL GIL). Biochem J 256:973–980
    [Google Scholar]
  20. Guarner F., Schaafsma G. J. 1998; Probiotics. Int J Food Microbiol 39:237–238 [CrossRef]
    [Google Scholar]
  21. Harley C. B., Reynolds R. P. 1987; Analysis of E. coli promoter sequences. Nucleic Acids Res 15:2343–2361 [CrossRef]
    [Google Scholar]
  22. Håvarstein L. S., Holo H., Nes I. F. 1994; The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by Gram-positive bacteria. Microbiology 140:2383–2389 [CrossRef]
    [Google Scholar]
  23. Håvarstein L. S., Diep D. B., Nes I. F. 1995; A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16:229–240 [CrossRef]
    [Google Scholar]
  24. Håvarstein L. S., Gaustad P., Nes I. F., Morrison D. A. 1996; Identification of the streptococcal competence-pheromone receptor. Mol Microbiol 21:863–869 [CrossRef]
    [Google Scholar]
  25. Holo H., Nes I. F. 1989; High-frequency transformation by electroporation of Lactococus lactis subsp. cremoris grown with glycine in osmotically stablized media. Appl Environ Microbiol 55:3119–3123
    [Google Scholar]
  26. Horton R. M., Cai Z. L., Ho S. N., Pease L. R. 1990; Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8:528–535
    [Google Scholar]
  27. Klaenhammer T. R. 1993; Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85 [CrossRef]
    [Google Scholar]
  28. Kleerebezem M., Quadri L. E., Kuipers O. P., de Vos W. M. 1997; Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904 [CrossRef]
    [Google Scholar]
  29. Marciset O., Jeronimus-Stratingh M. C., Mollet B., Poolman B. 1997; Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J Biol Chem 272:14277–14284 [CrossRef]
    [Google Scholar]
  30. Mattila-Sandholm T., Mättö J., Saarela M. 1999; Lactic acid bacteria with health claims – interactions and interference with gastrointestinal flora. Int Dairy J 9:25–35 [CrossRef]
    [Google Scholar]
  31. Mayr-Harting A., Hedges A. J., Buckley R. C. W. 1972 Methods for Studying Bacteriocins New York: Academic Press;
    [Google Scholar]
  32. McCormick J. K., Poon A., Sailer M., Gao Y., Roy K. L., McMullen L. M., Vederas J. C., Stiles M. E, van Belkum M. J. 1998; Genetic characterization and heterologous expression of brochocin-C, an antibotulinal, two-peptide bacteriocin produced by Brochothrix campestris ATCC 43754. Appl Environ Microbiol 64:4757–4766
    [Google Scholar]
  33. McGrath S., Fitzgerald G. F., van Sinderen D. 2001; Improvement and optimization of two engineered phage-resistance mechanisms in Lactococcus lactis . Appl Environ Microbiol 67:608–616 [CrossRef]
    [Google Scholar]
  34. Naidu A. S., Bidlack W. R., Clemens R. A. 1999; Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr 39:13–126 [CrossRef]
    [Google Scholar]
  35. Nes I. F., Eijsink V. G. H. 1999; Regulation of group II peptide bacteriocin synthesis by quorum-sensing mechanisms. In Cell–Cell Signaling in Bacteria pp 175–192 Edited by Dunny G. M., Winans S. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Nes I. F., Diep D. B., Håvarstein L. S., Brurberg M. B., Eijsink V., Holo H. 1996; Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Leeuwenhoek 70:113–128 [CrossRef]
    [Google Scholar]
  37. Nissen-Meyer J., Holo H., Håvarstein L. S., Sletten K., Nes I. F. 1992; A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 174:5686–5692
    [Google Scholar]
  38. O’Keeffe T., Hill C., Ross R. P. 1999; Characterization and heterologous expression of the genes encoding enterocin A production, immunity, and regulation in Enterococcus faecium DPC1146. Appl Environ Microbiol 65:1506–1515
    [Google Scholar]
  39. Parente E., Hill C. 1992; A comparision of factors affecting the production of two bacteriocins from lactic acid bacteria. J Appl Bacteriol 73:290–298
    [Google Scholar]
  40. Park S. F., Stewart G. S. A. B. 1990; High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin treated cells. Gene 94:129–132 [CrossRef]
    [Google Scholar]
  41. Pospiech A., Neumann B. 1995; A versatile quick preparation of genomic DNA from Gram positive bacteria. Trends Genet 11:217–218 [CrossRef]
    [Google Scholar]
  42. Quadri L. E., Yan L. Z., Stiles M. E., Vederas J. C. 1997; Effect of amino acid substitutions on the activity of carnobacteriocin B2. Overproduction of the antimicrobial peptide, its engineered variants, and its precursor in Escherichia coli . J Biol Chem 272:3384–3388 [CrossRef]
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Schurter W., Geiser M., Mathe D. 1989; Efficient transformation of Bacillus thuringiensis and B. cereus via electroporation: transformation of acrystalliferous strains with a cloned delta-endotoxin gene. Mol Gen Genet 218:177–181 [CrossRef]
    [Google Scholar]
  45. Simon D., Chopin A. 1988; Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis . Biochimie 70:559–566 [CrossRef]
    [Google Scholar]
  46. ten Brink B., Minekus M., van der Vossen J. M., Leer R. J., Huis in’t Veld J. H. 1994; Antimicrobial activity of lactobacilli: preliminary characterization and optimisation of production of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus M46. J Appl Bacteriol 77:140–148 [CrossRef]
    [Google Scholar]
  47. Tinoco I. Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nat New Biol 246:40–41 [CrossRef]
    [Google Scholar]
  48. Venema K., Dost M. H., Beun P. A., Haandrikman A. J., Venema G., Kok J. 1996; The genes for secretion and maturation of lactococcins are located on the chromosome of Lactococcus lactis IL1403. Appl Environ Microbiol 62:1689–1692
    [Google Scholar]
  49. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-973
Loading
/content/journal/micro/10.1099/00221287-148-4-973
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error