1887

Abstract

The gene of H37Rv has been characterized as the first step in determining the molecular events involved in the cell division process in mycobacteria. Western analysis revealed that intracellular levels of FtsZ are growth phase dependent in both and . Unregulated expression of from constitutive and promoters in hosts resulted in lethality whereas expression from only the promoter was toxic in hosts. Expression of from the promoter in resulted in ∼sixfold overproduction and the merodiploids exhibited slow growth, an increased tendency to clump and filament, and in some cases produced buds and branches. Many of the cells also contained abnormal and multiple septa. Expression of from the chemically inducible acetamidase promoter in hosts resulted in ∼22-fold overproduction of FtsZ and produced filamentous cells, many of which lacked any visible septa. Visualization of the FtsZ tagged with green fluorescent protein in by fluorescence microscopy revealed multiple fluorescent FtsZ foci, suggesting that steps subsequent to the formation of organized FtsZ structures but prior to septum formation are blocked in FtsZ-overproducing cells. Together these results suggest that the intracellular concentration of FtsZ protein is critical for productive septum formation in mycobacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-961
2002-04-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1480961a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-961&mimeType=html&fmt=ahah

References

  1. Beall, B. & Lutkenhaus, J. ( 1991; ). FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation. Genes Dev 5, 447-455.[CrossRef]
    [Google Scholar]
  2. Beall, B., Lowe, M. & Lutkenhaus, J. ( 1988; ). Cloning and characterization of Bacillus subtilis homologs of Escherichia coli cell division genes ftsZ and ftsA. J Bacteriol 170, 4855-4864.
    [Google Scholar]
  3. Bi, E. & Lutkenhaus, J. ( 1990; ). FtsZ regulates frequency of cell division in Escherichia coli. J Bacteriol 172, 2765-2768.
    [Google Scholar]
  4. Bi, E. F. & Lutkenhaus, J. ( 1991; ). FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161-164.[CrossRef]
    [Google Scholar]
  5. Bloom, B. R. & McKinney, J. D. ( 1999; ). The death and resurrection of tuberculosis. Nat Med 5, 872-874.[CrossRef]
    [Google Scholar]
  6. Cole, S. T., Brosch, R., Parkhill, J. & 39 other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.[CrossRef]
    [Google Scholar]
  7. Cormack, B. P., Bertram, G., Egerton, M., Gow, N. A. R., Falkow, S. & Brown, A. J. P. ( 1997; ). Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology 143, 303-311.[CrossRef]
    [Google Scholar]
  8. Dai, K. & Lutkenhaus, J. ( 1992; ). The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J Bacteriol 174, 6145-6151.
    [Google Scholar]
  9. Gaikwad, A., Babbarwal, V., Pant, V. & Mukherjee, S. K. ( 2000; ). Pea chloroplast FtsZ can form multimers and correct the thermosensitive defect of an Escherichia coli ftsZ mutant. Mol Gen Genet 263, 213-221.[CrossRef]
    [Google Scholar]
  10. Gomez, J. E. & Bishai, W. R. ( 2000; ). whmD is an essential mycobacterial gene required for proper septation and cell division. Proc Natl Acad Sci USA 97, 8554-8559.[CrossRef]
    [Google Scholar]
  11. Hu, Y., Mangan, J. A., Dhillon, J., Sole, K. M., Mitchison, D. A., Butcher, P. D. & Coates, A. R. ( 2000; ). Detection of mRNA transcripts and active transcription in persistent Mycobacterium tuberculosis induced by exposure to rifampicin or pyrazinamide. J Bacteriol 182, 6358-6365.[CrossRef]
    [Google Scholar]
  12. Jacobs, W. R.Jr, Kalpana, G. V., Cirillo, J. D., Pascopella, L., Snapper, S. B., Udani, R. A., Jones, W., Barletta, R. G. & Bloom, B. R. ( 1991; ). Genetic systems for mycobacteria. Methods Enzymol 204, 537-555.
    [Google Scholar]
  13. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  14. Latch, J. N. & Margolin, W. ( 1997; ). Generation of buds, swellings, and branches instead of filaments after blocking the cell cycle of Rhizobium meliloti. J Bacteriol 179, 2373-2381.
    [Google Scholar]
  15. Lowe, J. & Amos, L. A. ( 1998; ). Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203-206.[CrossRef]
    [Google Scholar]
  16. Lu, C., Stricker, J. & Erickson, H. P. ( 1998; ). FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima – quantitation, GTP hydrolysis, and assembly. Cell Motil Cytoskelet 40, 71-86.[CrossRef]
    [Google Scholar]
  17. Lutkenhaus, J. & Addinall, S. G. ( 1997; ). Bacterial cell division and the Z ring. Annu Rev Biochem 66, 93-116.[CrossRef]
    [Google Scholar]
  18. Ma, X. & Margolin, W. ( 1999; ). Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J Bacteriol 181, 7531-7544.
    [Google Scholar]
  19. Ma, X., Ehrhardt, D. W. & Margolin, W. ( 1996; ). Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci USA 93, 12998-13003.[CrossRef]
    [Google Scholar]
  20. Ma, X., Sun, Q., Wang, R., Singh, G., Jonietz, E. L. & Margolin, W. ( 1997; ). Interactions between heterologous FtsA and FtsZ proteins at the FtsZ ring. J Bacteriol 179, 6788-6797.
    [Google Scholar]
  21. Madiraju, M. V. V. S., Qin, M.-H., Yamamoto, K., Atkinson, M. A. L. & Rajagopalan, M. ( 1999; ). The dnaA gene region of Mycobacterium avium and the autonomous replication activities of its 5′ and 3′ flanking regions. Microbiology 145, 2913-2921.
    [Google Scholar]
  22. Margolin, W. ( 2000; ). Themes and variations in prokaryotic cell division. FEMS Microbiol Rev 24, 531-548.[CrossRef]
    [Google Scholar]
  23. McCormick, J. R., Su, E. P., Driks, A. & Losick, R. ( 1994; ). Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol Microbiol 14, 243-254.[CrossRef]
    [Google Scholar]
  24. Parish, T., Liu, J., Nikaido, H. & Stoker, N. G. ( 1997; ). A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. J Bacteriol 179, 7827-7833.
    [Google Scholar]
  25. Qin, M. H., Madiraju, M. V. & Rajagopalan, M. ( 1999; ). Characterization of the functional replication origin of Mycobacterium tuberculosis. Gene 233, 121-130.[CrossRef]
    [Google Scholar]
  26. Quardokus, E. M., Din, N. & Brun, Y. V. ( 2001; ). Cell cycle and positional constraints on FtsZ localization and the initiation of cell division in Caulobacter crescentus. Mol Microbiol 39, 949-959.[CrossRef]
    [Google Scholar]
  27. Rothfield, L., Justice, S. & Garcia-Lara, J. ( 1999; ). Bacterial cell division. Annu Rev Genet 33, 423-448.[CrossRef]
    [Google Scholar]
  28. Sackett, M. J., Kelly, A. J. & Brun, Y. V. ( 1998; ). Ordered expression of ftsQA and ftsZ during the Caulobacter crescentus cell cycle. Mol Microbiol 28, 421-434.[CrossRef]
    [Google Scholar]
  29. Salimnia, H., Radia, A., Bernatchez, S., Beveridge, T. J. & Dillon, J. R. ( 2000; ). Characterization of the ftsZ cell division gene of Neisseria gonorrhoeae: expression in Escherichia coli and N. gonorrhoeae. Arch Microbiol 173, 10-20.[CrossRef]
    [Google Scholar]
  30. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  31. Schwedock, J., McCormick, J. R., Angert, E. R., Nodwell, J. R. & Losick, R. ( 1997; ). Assembly of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of Streptomyces coelicolor. Mol Microbiol 25, 847-858.[CrossRef]
    [Google Scholar]
  32. Steen, H. B., Skarstad, K. & Boye, E. ( 1986; ). Flow cytometry of bacteria: cell cycle kinetics and effects of antibiotics. Ann NY Acad Sci 468, 329-338.[CrossRef]
    [Google Scholar]
  33. Stover, C. K., de la Cruz, V. F., Fuerst, T. R. & 11 other authors ( 1991; ). New use of BCG for recombinant vaccines. Nature 351, 456–460.[CrossRef]
    [Google Scholar]
  34. Triccas, J. A., Parish, T., Britton, W. J. & Gicquel, B. ( 1998; ). An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol Lett 167, 151-156.[CrossRef]
    [Google Scholar]
  35. Van Wezel, G. P., Van der Meulen, J., Taal, E., Koerten, H. & Kraal, B. ( 2000; ). Effects of increased and deregulated expression of cell division genes on the morphology and on antibiotic production of Streptomycetes. Antonie Leeuwenhoek 78, 269-276.[CrossRef]
    [Google Scholar]
  36. Wang, X. & Lutkenhaus, J. ( 1993; ). The FtsZ protein of Bacillus subtilis is localized at the division site and has GTPase activity that is dependent upon FtsZ concentration. Mol Microbiol 9, 435-442.[CrossRef]
    [Google Scholar]
  37. Ward, J. E.Jr & Lutkenhaus, J. ( 1985; ). Overproduction of FtsZ induces minicell formation in E. coli. Cell 42, 941-949.[CrossRef]
    [Google Scholar]
  38. Wayne, L. G. & Hayes, L. G. ( 1996; ). An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64, 2062-2069.
    [Google Scholar]
  39. Yamamoto, K., Low, B., Rutherford, S. A., Rajagopalan, M. & Madiraju, M. V. ( 2001; ). The Mycobacterium avium–intracellulare complex dnaB locus and protein intein splicing. Biochem Biophys Res Commun 280, 898-903.[CrossRef]
    [Google Scholar]
  40. Yaoi, T., Laksanalamai, P., Jiemjit, A., Kagawa, H. K., Alton, T. & Trent, J. D. ( 2000; ). Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum. Biochem Biophys Res Commun 275, 936-945.[CrossRef]
    [Google Scholar]
  41. Yu, X. C. & Margolin, W. ( 2000; ). Deletion of the min operon results in increased thermosensitivity of an ftsZ84 mutant and abnormal FtsZ ring assembly, placement, and disassembly. J Bacteriol 182, 6203-6213.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-961
Loading
/content/journal/micro/10.1099/00221287-148-4-961
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error