1887

Abstract

The inability to transform many clinically important Gram-negative bacteria has hampered genetic studies addressing the mechanism of bacterial pathogenesis. This report describes the development and construction of a delivery system utilizing the broad-host-range transducing bacteriophage P1. The phagemids used in this system contain a P1 initiation site to package the vector, a P1 lytic replicon to generate concatemeric DNA, a broad-host-range origin of replication and an antibiotic-resistance determinant to select bacterial clones containing the recircularized phagemid. Phagemid DNA was successfully introduced by infection and stably maintained in members of the families (, , , and ) and (). In addition to laboratory strains, these virions were used successfully to deliver phagemids to a number of strains isolated from patients. This ability to deliver genetic information to wild-type strains raises the potential for use in antimicrobial therapies and DNA vaccine development.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-943
2002-04-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1480943a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-943&mimeType=html&fmt=ahah

References

  1. Antoine R., Locht C. 1992; Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from Gram-positive organisms. Mol Microbiol6:1785–1799[CrossRef]
    [Google Scholar]
  2. Arber W. 1960; Transduction of chromosomal genes and episomes in Escherichia coli . Virology11:273–288[CrossRef]
    [Google Scholar]
  3. Benedik M. J. 1989; High efficiency transduction of single strand plasmid DNA into enteric bacteria. Mol Gen Genet218:353–354[CrossRef]
    [Google Scholar]
  4. Bickle T. A., Krüger D. H. 1993; Biology of DNA restriction. Microbiol Rev57:434–450
    [Google Scholar]
  5. Chassy B. M., Mercenier A., Flickinger J. 1988; Transformation of bacteria by electroporation. Tibtech6:303–309[CrossRef]
    [Google Scholar]
  6. Dinsmore P. K., Klaenhammer T. R. 1995; Bacteriophage resistance in Lactococcus. Mol Biotechnol 4. 297–314[CrossRef]
  7. Diver J. M., Bryan L. E., Sokol P. A. 1990; Transformation of Pseudomonas aeruginosa by electroporation. Anal Biochem189:75–79[CrossRef]
    [Google Scholar]
  8. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res16:6127–6145[CrossRef]
    [Google Scholar]
  9. Elzer P. H., Kovach M. E., Phillips R. W., Robertson G. T., Peterson K. M., Roop M. R. 1995; In vivo and in vitro stability of the broad-host-range cloning vector pBBR1MCS in six Brucella species. Plasmid33:51–57[CrossRef]
    [Google Scholar]
  10. Gliesche C. G. 1997; Transformation of methylotrophic bacteria by electroporation. Can J Microbiol43:197–201[CrossRef]
    [Google Scholar]
  11. Glynn M. K., Bopp C., Dewitt W., Dabney P., Mokhtar M., Angulo F. L. 1998; Emergence of multidrug-resistant Salmonella enterica serotype typhimurium DT104 infections in the United States. N Engl J Med338:1333–1338[CrossRef]
    [Google Scholar]
  12. Gupta K., Scholes D., Stamm W. E. 1999; Increasing prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in women. JAMA (J Am Med Assoc)281:736–738[CrossRef]
    [Google Scholar]
  13. Hanahan D., Jessee J., Bloom F. R. 1991; Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol204:63–113
    [Google Scholar]
  14. Hancock R. E. W., Chapple D. S. 1999; Peptide antibiotics. Antimicrob Agents Chemother43:1317–1323
    [Google Scholar]
  15. Hochman L., Segev N., Sternberg N., Cohen G. 1983; Site-specific recombinational circularization of bacteriophage P1 DNA. Virology131:11–17[CrossRef]
    [Google Scholar]
  16. Iida S., Streiff M. B., Bickle T. A., Arber W. 1987; Two DNA antirestriction systems of bacteriophage P1, darA , and darB: characterization of darA phages. Virology157:156–166[CrossRef]
    [Google Scholar]
  17. Lawton W. D., Molnar D. M. 1972; Lysogenic conversion of Pasteurella by Escherichia coli bacteriophage P1 Cm. J Virol9:708–709
    [Google Scholar]
  18. Lennox E. S. 1955; Transduction of linked genetic characters of the host by bacteriophage P1. Virology1:190–206[CrossRef]
    [Google Scholar]
  19. Lorenz M. G., Wackernagel W. 1994; Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev58:563–602
    [Google Scholar]
  20. Miller R. V. 1998; Bacterial gene swapping in nature. Sci Am47:67–71
    [Google Scholar]
  21. Murooka Y., Harada T. 1979; Expansion of the host range of coliphage P1 and gene transfer from enteric bacteria to other Gram-negative bacteria. Appl Environ Microbiol30:754–757
    [Google Scholar]
  22. Novick R. P. 1990; The staphylococcus as a molecular genetic system. In Molecular Biology of the Staphylococci pp1–37 Edited by Novick R. P.. New York: VCH Publishers;
    [Google Scholar]
  23. Ogunseitan O. A., Sayler G. S., Miller R. V. 1992; Application of DNA probes to analysis of bacteriophage distribution patterns in the environment. Appl Environ Microbiol58:2046–2052
    [Google Scholar]
  24. Okada M., Watanabe T. 1968; Transduction with phage P1 in Salmonella typhimurium . Nature218:185–187[CrossRef]
    [Google Scholar]
  25. Omenn G. S., Friedman J. 1970; Isolation of mutants of Staphylococcus aureus lacking extracellular nuclease activity. J Bacteriol101:921–924
    [Google Scholar]
  26. Pittet D., Wenzel R. P. 1995; Nosocomial bloodstream infections. Secular trends in rates, mortality, and contribution to total hospital deaths. Arch Intern Med155:1177–1184[CrossRef]
    [Google Scholar]
  27. Richard P., Le Floch R., Chamoux C., Pannier M., Espaze E., Richet H. 1994; Pseudomonas aeruginosa outbreak in a burn unit: role of antimicrobials in the emergence of multiply resistant strains. J Infect Dis170:377–383[CrossRef]
    [Google Scholar]
  28. Rosner J. L. 1972; Formation, induction, and curing of bacteriophage P1 lysogens. Virology49:679–689
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Segev N., Cohen G. 1981; Control of circularization of bacteriophage P1 DNA in Escherichia coli . Virology114:333–342[CrossRef]
    [Google Scholar]
  31. Shireen T., Sarker M. R., Ahmed Z. U. 1990; Studies on transformation in Shigella . Can J Microbiol36:348–351[CrossRef]
    [Google Scholar]
  32. Snyder L. 1995; Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents?. Mol Microbiol15:415–420[CrossRef]
    [Google Scholar]
  33. Sternberg N. 1990; Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc Natl Acad Sci USA87:103–107[CrossRef]
    [Google Scholar]
  34. Sternberg N., Hamilton D. 1981; Bacteriophage P1 site-specific recombination. J Mol Biol150:467–486[CrossRef]
    [Google Scholar]
  35. Sternberg N., Sauer B., Hoess R., Abremski K. 1986; Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J Mol Biol187:197–212[CrossRef]
    [Google Scholar]
  36. Su H., Shao Z., Tkalec L., Blain F., Zimmerman J. 2001; Development of a genetic system for the transfer of DNA into Flavobacterium heparinum . Microbiology147:581–589
    [Google Scholar]
  37. Takagi T., Kisumi M. 1985; Isolation of a versatile Serratia marcescens mutant as a host and molecular cloning of the aspartase gene. J Bacteriol161:1–6
    [Google Scholar]
  38. Wiener J., Quinn J. P., Bradford P. A., Goering R. V., Nathan C., Bush K., Weinstein R. A. 1999; Multiple antibiotic-resistant Klebsiella and Escherichia coli in nursing homes. JAMA (J Am Med Assoc)281:517–523[CrossRef]
    [Google Scholar]
  39. Wirth R., Friesenegger A., Fiedler S. 1989; Transformation of various species of Gram-negative bacteria belonging to 11 different genera by electroporation. Mol Gen Genet216:175–177[CrossRef]
    [Google Scholar]
  40. Wright J. J., Kumar A., Hayward R. S. 1992; Hypersymmetry in a transcriptional terminator of Escherichia coli confers increased efficiency as well as bidirectionality. EMBO J11:1957–1964
    [Google Scholar]
  41. Wu S., Lo S., Shao C., Tsai H., Hor L. 2001; Cloning and characterization of a periplasmic nuclease of Vibrio vulnificus and its role in preventing uptake of foreign DNA. Appl Environ Microbiol67:82–88[CrossRef]
    [Google Scholar]
  42. Yarmolinsky M. B., Sternberg N. 1988; Bacteriophage P1. In The Bacteriophages pp291–438 Edited by Calendar R.. New York: Plenum;
    [Google Scholar]
  43. Zeph L. R., Onaga M. A., Stotzky G. 1988; Transduction of Escherichia coli by bacteriophage P1 in soil. Appl Environ Microbiol54:1731–1737
    [Google Scholar]
  44. Zuercher A. W., Miescher S. M., Vogel M., Rudolf M. P., Stadler M. B., Stadler B. M. 2000; Oral anti-IgE immunization with epitope-displaying phage. Eur J Immunol30:128–135[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-943
Loading
/content/journal/micro/10.1099/00221287-148-4-943
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error