1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-893
2002-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1480893a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-893&mimeType=html&fmt=ahah

References

  1. Ahn S. H., Acurio A., Kron S. J. 1999; Regulation of G2/M progression by the STE mitogen-activated protein kinase pathway in budding yeast filamentous growth. Mol Biol Cell 10:3301–3316 [CrossRef]
    [Google Scholar]
  2. Andrews D. L., Egan J. D., Mayorga M. E., Gold S. E. 2000; The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth. Mol Plant–Microbe Interact 13:781–786 [CrossRef]
    [Google Scholar]
  3. Ansari K., Martin S., Farkasovsky M., Ehbrecht I. M., Kuntzel H. 1999; Phospholipase C binds to the receptor-like GPR1 protein and controls pseudohyphal differentiation in Saccharomyces cerevisiae . J Biol Chem 274:30052–30058 [CrossRef]
    [Google Scholar]
  4. Bardwell L., Cook J. G., Zhu-Shimoni J. X., Voora D., Thorner J. 1998; Differential regulation of transcription: repression by unactivated mitogen-activated protein kinase Kss1 requires the Dig1 and Dig2 proteins. Proc Natl Acad Sci USA 95:15400–15405 [CrossRef]
    [Google Scholar]
  5. Bennett J. W. 1998; Mycotechnology: the role of fungi in biotechnology. J Biotechnol 66:101–107 [CrossRef]
    [Google Scholar]
  6. Borges-Walmsley M. I., Walmsley A. R. 2000; cAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends Microbiol 8:133–141 [CrossRef]
    [Google Scholar]
  7. Bothast R. J., Nichols N. N., Dien B. S. 1999; Fermentations with new recombinant organisms. Biotechnol Prog 15:867–875 [CrossRef]
    [Google Scholar]
  8. Bouquin N., Barral Y., Courbeyrette R., Blondel M., Snyder M., Mann C. 2000; Regulation of cytokinesis by the Elm1 protein kinase in Saccharomyces cerevisiae . J Cell Sci 113:1435–1445
    [Google Scholar]
  9. Brown A. J., Gow N. A. 1999; Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7:333–338 [CrossRef]
    [Google Scholar]
  10. Brown J. L., Bussey H. 1993; The yeast KRE9 gene encodes an O glycoprotein involved in cell surface beta-glucan assembly. Mol Cell Biol 13:6346–6356
    [Google Scholar]
  11. Cali B. M., Doyle T. C., Botstein D., Fink G. R. 1998; Multiple functions for actin during filamentous growth of Saccharomyces cerevisiae . Mol Biol Cell 9:1873–1889 [CrossRef]
    [Google Scholar]
  12. Carlson M. 1999; Glucose repression in yeast. Curr Opin Microbiol 2:202–207 [CrossRef]
    [Google Scholar]
  13. Chandarlapaty S., Errede B. 1998; Ash1, a daughter cell-specific protein, is required for pseudohyphal growth of Saccharomyces cerevisiae . Mol Cell Biol 18:2884–2891
    [Google Scholar]
  14. Chant J. 1999; Cell polarity in yeast. Annu Rev Cell Dev Biol 15:365–391 [CrossRef]
    [Google Scholar]
  15. Chartrain M., Salmon P. M., Robinson D. K., Buckland B. C. 2000; Metabolic engineering and directed evolution for the production of pharmaceuticals. Curr Opin Biotechnol 11:209–214 [CrossRef]
    [Google Scholar]
  16. Christensen B., Nielsen J. 2000; Metabolic network analysis. A powerful tool in metabolic engineering. Adv Biochem Eng Biotechnol 66:209–231
    [Google Scholar]
  17. Conlan R. S., Tzamarias D. 2001; Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol 309:1007–1015 [CrossRef]
    [Google Scholar]
  18. Conte D. Jr, Curcio M. J. 2000; Fus3 controls Ty1 transpositional dormancy through the invasive growth MAPK pathway. Mol Microbiol 35:415–427 [CrossRef]
    [Google Scholar]
  19. Cook J. G., Bardwell L., Thorner J. 1997; Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature 390:85–88 [CrossRef]
    [Google Scholar]
  20. Cullen P. J., Sprague G. F. Jr 2000; Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A 97:13619–13624 [CrossRef]
    [Google Scholar]
  21. Cullen P. J., Schultz J., Horecka J., Stevenson B. J., Jigami Y., Sprague G. F. Jr 2000; Defects in protein glycosylation cause SHO1 -dependent activation of a STE12 signaling pathway in yeast. Genetics 155:1005–1018
    [Google Scholar]
  22. Dohrmann P. R., Voth W. P., Stillman D. J. 1996; Role of negative regulation in promoter specificity of the homologous transcriptional activators Ace2p and Swi5p. Mol Cell Biol 16:1746–1758
    [Google Scholar]
  23. Donzeau M., Bandlow W. 1999; The yeast trimeric guanine nucleotide-binding protein alpha subunit, Gpa2p, controls the meiosis-specific kinase Ime2p activity in response to nutrients. Mol Cell Biol 19:6110–6119
    [Google Scholar]
  24. D’Souza C. A., Heitman J. 2001; Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25:349–364 [CrossRef]
    [Google Scholar]
  25. Durrenberger F., Wong K., Kronstad J. W. 1998; Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis . Proc Natl Acad Sci U S A 95:5684–5689 [CrossRef]
    [Google Scholar]
  26. Edgington N. P., Blacketer M. J., Bierwagen T. A., Myers A. M. 1999; Control of Saccharomyces cerevisiae filamentous growth by cyclin-dependent kinase Cdc28. Mol Cell Biol 19:1369–1380
    [Google Scholar]
  27. Edskes H. K., Hanover J. A., Wickner R. B. 1999; Mks1p is a regulator of nitrogen catabolism upstream of Ure2p in Saccharomyces cerevisiae . Genetics 153:585–594
    [Google Scholar]
  28. Erdman S., Lin L., Malczynski M., Snyder M. 1998; Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol 140:461–483 [CrossRef]
    [Google Scholar]
  29. Feng Q., Summers E., Guo B., Fink G. 1999; Ras signaling is required for serum-induced hyphal differentiation in Candida albicans . J Bacteriol 181:6339–6346
    [Google Scholar]
  30. Fujita A., Tonouchi A., Hiroko T., Inose F., Nagashima T., Satoh R., Tanaka S. 1999; Hsl7p, a negative regulator of Ste20p protein kinase in the Saccharomyces cerevisiae filamentous growth-signaling pathway. Proc Natl Acad Sci USA 96:8522–8527 [CrossRef]
    [Google Scholar]
  31. Gagiano M., van Dyk D., Bauer F. F., Lambrechts M. G., Pretorius I. S. 1999; Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae . Mol Microbiol 31:103–116 [CrossRef]
    [Google Scholar]
  32. Galitski T., Saldanha A. J., Styles C. A., Lander E. S., Fink G. R. 1999; Ploidy regulation of gene expression. Science 285:251–254 [CrossRef]
    [Google Scholar]
  33. Gancedo J. M. 1998; Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361
    [Google Scholar]
  34. Gancedo J. M. 2001; Control of pseudohyphae formation in Saccharomyces cerevisiae . FEMS Microbiol Rev 25:107–123 [CrossRef]
    [Google Scholar]
  35. Gavrias V., Andrianopoulos A., Gimeno C. J., Timberlake W. E. 1996; Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol Microbiol 19:1255–1263 [CrossRef]
    [Google Scholar]
  36. Gibbs P. A., Seviour R. J., Schmid F. 2000; Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20:17–48 [CrossRef]
    [Google Scholar]
  37. Gimeno C. J., Fink G. R. 1994; Induction of pseudohyphal growth by overexpression of PHD1 , a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 14:2100–2112
    [Google Scholar]
  38. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R. 1992; Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090 [CrossRef]
    [Google Scholar]
  39. Goodson H. V., Anderson B. L., Warrick H. M., Pon L. A., Spudich J. A. 1996; Synthetic lethality screen identifies a novel yeast myosin I gene ( MYO5 ): myosin I proteins are required for polarization of the actin cytoskeleton. J Cell Biol 133:1277–1291 [CrossRef]
    [Google Scholar]
  40. Guo B., Styles C. A., Feng Q., Fink G. R. 2000; A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A 97:12158–12163 [CrossRef]
    [Google Scholar]
  41. Hammond J. R. 1995; Genetically-modified brewing yeasts for the 21st century. Progress to date. Yeast 11:1613–1627 [CrossRef]
    [Google Scholar]
  42. Hollenhorst P. C., Bose M. E., Mielke M. R., Muller U., Fox C. A. 2000; Forkhead genes in transcriptional silencing, cell morphology and the cell cycle. Overlapping and distinct functions for FKH1 and FKH2 in Saccharomyces cerevisiae . Genetics 154:1533–1548
    [Google Scholar]
  43. Jansen G., Buhring F., Hollenberg C. P., Ramezani Rad M. 2001; Mutations in the SAM domain of STE50 differentially influence the MAPK-mediated pathways for mating, filamentous growth and osmotolerance in Saccharomyces cerevisiae . Mol Genet Genomics 265:102–117 [CrossRef]
    [Google Scholar]
  44. Jaquenoud M., Peter M. 2000; Gic2p may link activated Cdc42p to components involved in actin polarization, including Bni1p and Bud6p (Aip3p. Mol Cell Biol 20:6244–6258 [CrossRef]
    [Google Scholar]
  45. Khale A., Deshpande M. V. 1992; Dimorphism in Benjaminiella poitrasii : cell wall chemistry of parent and two stable yeast mutants. Antonie Leeuwenhoek 62:299–307 [CrossRef]
    [Google Scholar]
  46. Khazak V., Sadhale P. P., Woychik N. A., Brent R., Golemis E. A. 1995; Human RNA polymerase II subunit hsRPB7 functions in yeast and influences stress survival and cell morphology. Mol Biol Cell 6:759–775 [CrossRef]
    [Google Scholar]
  47. King L., Butler G. 1998; Ace2p, a regulator of CTS1 (chitinase) expression, affects pseudohyphal production in Saccharomyces cerevisiae . Curr Genet 34:183–191 [CrossRef]
    [Google Scholar]
  48. Klasson H., Fink G. R., Ljungdahl P. O. 1999; Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol Cell Biol 19:5405–5416
    [Google Scholar]
  49. Kleyn J., Hough J. 1971; The microbiology of brewing. Annu Rev Microbiol 25:583–608 [CrossRef]
    [Google Scholar]
  50. Kobayashi O., Yoshimoto H., Sone H. 1999; Analysis of the genes activated by the FLO8 gene in Saccharomyces cerevisiae . Curr Genet 36:256–261 [CrossRef]
    [Google Scholar]
  51. Kovacech B., Nasmyth K., Schuster T. 1996; EGT2 gene transcription is induced predominantly by Swi5 in early G1. Mol Cell Biol 16:3264–3274
    [Google Scholar]
  52. Kron S. J., Gow N. A. 1995; Budding yeast morphogenesis: signalling, cytoskeleton and cell cycle. Curr Opin Cell Biol 7:845–855 [CrossRef]
    [Google Scholar]
  53. Kron S. J., Styles C. A., Fink G. R. 1994; Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae . Mol Biol Cell 5:1003–1022 [CrossRef]
    [Google Scholar]
  54. Kronstad J., De Maria A. D., Funnell D., Laidlaw R. D., Lee N., de Sa M. M., Ramesh M. 1998; Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways. Arch Microbiol 170:395–404 [CrossRef]
    [Google Scholar]
  55. Kubler E., Mosch H. U., Rupp S., Lisanti M. P. 1997; Gpa2p, a G-protein alpha-subunit, regulates growth and pseudohyphal development in Saccharomyces cerevisiae via a cAMP-dependent mechanism. J Biol Chem 272:20321–20323 [CrossRef]
    [Google Scholar]
  56. Lambrechts M. G., Bauer F. F., Marmur J., Pretorius I. S. 1996; Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A 93:8419–8424 [CrossRef]
    [Google Scholar]
  57. Lee B. N., Elion E. A. 1999; The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components. Proc Natl Acad Sci USA 96:12679–12684 [CrossRef]
    [Google Scholar]
  58. Lengeler K. B., Davidson R. C., D’Souza C., Harashima T., Shen W. C., Wang P., Pan X., Waugh M., Heitman J. 2000; Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785 [CrossRef]
    [Google Scholar]
  59. Li W., Mitchell A. P. 1997; Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 145:63–73
    [Google Scholar]
  60. Liu H., Styles C. A., Fink G. R. 1996; Saccharomyces cerevisiae S288C has a mutation in FLO8 , a gene required for filamentous growth. Genetics 144:967–978
    [Google Scholar]
  61. Lo H. J., Kohler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949 [CrossRef]
    [Google Scholar]
  62. Lo W. S., Dranginis A. M. 1998; The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae . Mol Biol Cell 9:161–171 [CrossRef]
    [Google Scholar]
  63. Loeb J. D., Kerentseva T. A., Pan T., Sepulveda-Becerra M., Liu H. 1999; Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway. Genetics 153:1535–1546
    [Google Scholar]
  64. Longtine M. S., Theesfeld C. L., McMillan J. N., Weaver E., Pringle J. R., Lew D. J. 2000; Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae . Mol Cell Biol 20:4049–4061 [CrossRef]
    [Google Scholar]
  65. Lorenz M. C., Heitman J. 1997; Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog. EMBO J 16:7008–7018 [CrossRef]
    [Google Scholar]
  66. Lorenz M. C., Heitman J. 1998a; Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics 150:1443–1457
    [Google Scholar]
  67. Lorenz M. C., Heitman J. 1998b; The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae . EMBO J 17:1236–1247 [CrossRef]
    [Google Scholar]
  68. Lorenz M. C., Cutler N. S., Heitman J. 2000a; Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae . Mol Biol Cell 11:183–199 [CrossRef]
    [Google Scholar]
  69. Lorenz M. C., Pan X., Harashima T., Cardenas M. E., Xue Y., Hirsch J. P., Heitman J. 2000b; The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae . Genetics 154:609–622
    [Google Scholar]
  70. Madden K., Snyder M. 1998; Cell polarity and morphogenesis in budding yeast. Annu Rev Microbiol 52:687–744 [CrossRef]
    [Google Scholar]
  71. Madhani H. D., Styles C. A., Fink G. R. 1997; MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91:673–684 [CrossRef]
    [Google Scholar]
  72. Madhani H. D., Galitski T., Lander E. S., Fink G. R. 1999; Effectors of a developmental mitogen-activated protein kinase cascade revealed by expression signatures of signaling mutants. Proc Natl Acad Sci U S A 96:12530–12535 [CrossRef]
    [Google Scholar]
  73. Miled C., Mann C., Faye G. 2001; Xbp1-mediated repression of CLB gene expression contributes to the modifications of yeast cell morphology and cell cycle seen during nitrogen-limited growth. Mol Cell Biol 21:3714–3724 [CrossRef]
    [Google Scholar]
  74. Morillon A., Springer M., Lesage P. 2000; Activation of the Kss1 invasive-filamentous growth pathway induces Ty1 transcription and retrotransposition in Saccharomyces cerevisiae . Mol Cell Biol 20:5766–5776 [CrossRef]
    [Google Scholar]
  75. Moriya H., Shimizu-Yoshida Y., Omori A., Iwashita S., Katoh M., Sakai A. 2001; Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. Genes Dev 15:1217–1228 [CrossRef]
    [Google Scholar]
  76. Mosch H. U., Fink G. R. 1997; Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae . Genetics 145:671–684
    [Google Scholar]
  77. Mosch H. U., Roberts R. L., Fink G. R. 1996; Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae . Proc Natl Acad Sci U S A 93:5352–5356 [CrossRef]
    [Google Scholar]
  78. Mosch H. U., Kubler E., Krappmann S., Fink G. R., Braus G. H. 1999; Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae . Mol Biol Cell 10:1325–1335 [CrossRef]
    [Google Scholar]
  79. Mosch H. U., Kohler T., Braus G. H. 2001; Different domains of the essential GTPase Cdc42p required for growth and development of Saccharomyces cerevisiae . Mol Cell Biol 21:235–248 [CrossRef]
    [Google Scholar]
  80. Murray L. E., Rowley N., Dawes I. W., Johnston G. C., Singer R. A. 1998; A yeast glutamine tRNA signals nitrogen status for regulation of dimorphic growth and sporulation. Proc Natl Acad Sci U S A 95:8619–8624 [CrossRef]
    [Google Scholar]
  81. Ni L., Snyder M. 2001; A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae . Mol Biol Cell 12:2147–2170 [CrossRef]
    [Google Scholar]
  82. Oehlen L. J., Cross F. R. 1998; Potential regulation of Ste20 function by the Cln1-Cdc28 and Cln2-Cdc28 cyclin-dependent protein kinases. J Biol Chem 273:25089–25097 [CrossRef]
    [Google Scholar]
  83. O’Rourke S. M., Herskowitz I. 1998; The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae . Genes Dev 12:2874–2886 [CrossRef]
    [Google Scholar]
  84. Ostergaard S., Olsson L., Nielsen J. 2000; Metabolic engineering of Saccharomyces cerevisiae . Microbiol Mol Biol Rev 64:34–50 [CrossRef]
    [Google Scholar]
  85. Palecek S. P., Parikh A. S., Kron S. J. 2000; Genetic analysis reveals that FLO11 upregulation and cell polarization independently regulate invasive growth in Saccharomyces cerevisiae . Genetics 156:1005–1023
    [Google Scholar]
  86. Pan X., Heitman J. 1999; Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae . Mol Cell Biol 19:4874–4887
    [Google Scholar]
  87. Pan X., Heitman J. 2000; Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol 20:8364–8372 [CrossRef]
    [Google Scholar]
  88. Pan X., Harashima T., Heitman J. 2000; Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae . Curr Opin Microbiol 3:567–572 [CrossRef]
    [Google Scholar]
  89. Peter M., Neiman A. M., Park H. O., van Lohuizen M., Herskowitz I. 1996; Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J 15:7046–7059
    [Google Scholar]
  90. Posas F., Takekawa M., Saito H. 1998; Signal transduction by MAP kinase cascades in budding yeast. Curr Opin Microbiol 1:175–182 [CrossRef]
    [Google Scholar]
  91. Pretorius I. S. 2000; Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729 [CrossRef]
    [Google Scholar]
  92. Pruyne D., Bretscher A. 2000; Polarization of cell growth in yeast. J Cell Sci 113:571–585
    [Google Scholar]
  93. Radcliffe P. A., Binley K. M., Trevethick J., Hall M., Sudbery P. E. 1997; Filamentous growth of the budding yeast Saccharomyces cerevisiae induced by overexpression of the WHI2 gene. Microbiology 143:1867–1876 [CrossRef]
    [Google Scholar]
  94. Roberts R. L., Mosch H. U., Fink G. R. 1997; 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae . Cell 89:1055–1065 [CrossRef]
    [Google Scholar]
  95. Robertson L. S., Fink G. R. 1998; The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A 95:13783–13787 [CrossRef]
    [Google Scholar]
  96. Robertson L. S., Causton H. C., Young R. A., Fink G. R. 2000; The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci U S A 97:5984–5988 [CrossRef]
    [Google Scholar]
  97. Roemer T., Vallier L., Sheu Y. J., Snyder M. 1998; The Spa2-related protein, Sph1p, is important for polarized growth in yeast. J Cell Sci 111:479–494
    [Google Scholar]
  98. Rolland F., De Winde J. H., Lemaire K., Boles E., Thevelein J. M., Winderickx J. 2000; Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol 38:348–358 [CrossRef]
    [Google Scholar]
  99. Rupp S., Summers E., Lo H. J., Madhani H., Fink G. 1999; MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18:1257–1269 [CrossRef]
    [Google Scholar]
  100. Russell M., Bradshaw-Rouse J., Markwardt D., Heideman W. 1993; Changes in gene expression in the Ras/adenylate cyclase system of Saccharomyces cerevisiae : correlation with cAMP levels and growth arrest. Mol Biol Cell 4:757–765 [CrossRef]
    [Google Scholar]
  101. Sabbagh W., Flatauer L. J., Bardwell A. J., Bardwell L. 2001; Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation. Mol Cell 8:683–691 [CrossRef]
    [Google Scholar]
  102. San-Blas G. 1993; Biochemical and physiological aspects in the dimorphism of Paracoccidioides brasiliensis . Arch Med Res 24:267–268
    [Google Scholar]
  103. San-Blas G., Travassos L. R., Fries B. C. 10 other authors 2000; Fungal morphogenesis and virulence. Med Mycol 38 : suppl. 1 79–86 [CrossRef]
    [Google Scholar]
  104. Sanchez-Martinez C., Perez-Martin J. 2001; Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis – similar inputs, different outputs. Curr Opin Microbiol 4:214–221 [CrossRef]
    [Google Scholar]
  105. Sanders S. L., Gentzsch M., Tanner W., Herskowitz I. 1999; O-Glycosylation of Axl2/Bud10p by Pmt4p is required for its stability, localization, and function in daughter cells. J Cell Biol 145:1177–1188 [CrossRef]
    [Google Scholar]
  106. Schilling C. H., Schuster S., Palsson B. O., Heinrich R. 1999; Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol Prog 15:296–303 [CrossRef]
    [Google Scholar]
  107. Schroder M., Chang J. S., Kaufman R. J. 2000; The unfolded protein response represses nitrogen-starvation induced developmental differentiation in yeast. Genes Dev 14:2962–2975 [CrossRef]
    [Google Scholar]
  108. Sheu Y. J., Barral Y., Snyder M. 2000; Polarized growth controls cell shape and bipolar bud site selection in Saccharomyces cerevisiae . Mol Cell Biol 20:5235–5247 [CrossRef]
    [Google Scholar]
  109. Stanhill A., Schick N., Engelberg D. 1999; The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol Cell Biol 19:7529–7538
    [Google Scholar]
  110. Straver M. H., vd Aar P. C., Smit G., Kijne J. W. 1993; Determinants of flocculence of brewer’s yeast during fermentation in wort. Yeast 9:527–532 [CrossRef]
    [Google Scholar]
  111. Taheri N., Kohler T., Braus G. H., Mosch H. U. 2000; Asymmetrically localized Bud8p and Bud9p proteins control yeast cell polarity and development. EMBO J 19:6686–6696 [CrossRef]
    [Google Scholar]
  112. Tamaki H., Miwa T., Shinozaki M., Saito M., Yun C. W., Yamamoto K., Kumagai H. 2000; GPR1 regulates filamentous growth through FLO11 in yeast Saccharomyces cerevisiae . Biochem Biophys Res Commun 267:164–168 [CrossRef]
    [Google Scholar]
  113. Uren A. G., Beilharz T., O’Connell M. J., Bugg S. J., van Driel R., Vaux D. L., Lithgow T. 1999; Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proc Natl Acad Sci U S A 96:10170–10175 [CrossRef]
    [Google Scholar]
  114. Viard B., Kuriyama H. 1997; Phase-specific protein expression in the dimorphic yeast Saccharomyces cerevisiae . Biochem Biophys Res Commun 233:480–486 [CrossRef]
    [Google Scholar]
  115. Ward M. P., Gimeno C. J., Fink G. R., Garrett S. 1995; SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol 15:6854–6863
    [Google Scholar]
  116. Wartmann T., Kunze G. 2000; Genetic transformation and biotechnological application of the yeast Arxula adeninivorans . Appl Microbiol Biotechnol 54:619–624 [CrossRef]
    [Google Scholar]
  117. Wilkinson B. M., James C. M., Walmsley R. M. 1996; Partial deletion of the Saccharomyces cerevisiae GDH3 gene results in novel starvation phenotypes. Microbiology 142:1667–1673 [CrossRef]
    [Google Scholar]
  118. Wright R. M., Repine T., Repine J. E. 1993; Reversible pseudohyphal growth in haploid Saccharomyces cerevisiae is an aerobic process. Curr Genet 23:388–391 [CrossRef]
    [Google Scholar]
  119. Xue Y., Batlle M., Hirsch J. P. 1998; GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. EMBO J 17:1996–2007 [CrossRef]
    [Google Scholar]
  120. Yabe T., Yamada-Okabe T., Kasahara S., Furuichi Y., Nakajima T., Ichishima E., Arisawa M., Yamada-Okabe H. 1996; HKR1 encodes a cell surface protein that regulates both cell wall beta-glucan synthesis and budding pattern in the yeast Saccharomyces cerevisiae . J Bacteriol 178:477–483
    [Google Scholar]
  121. Yang S., Ayscough K. R., Drubin D. G. 1997; A role for the actin cytoskeleton of Saccharomyces cerevisiae in bipolar bud-site selection. J Cell Biol 136:111–123 [CrossRef]
    [Google Scholar]
  122. Yun C. W., Tamaki H., Nakayama R., Yamamoto K., Kumagai H. 1998; Gpr1p, a putative G-protein coupled receptor, regulates glucose-dependent cellular cAMP level in yeast Saccharomyces cerevisiae . Biochem Biophys Res Commun 252:29–33 [CrossRef]
    [Google Scholar]
  123. Zahner J. E., Harkins H. A., Pringle J. R. 1996; Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae . Mol Cell Biol 16:1857–1870
    [Google Scholar]
  124. Zhang Z., Smith M. M., Mymryk J. S. 2001; Interaction of the E1A oncoprotein with Yak1p, a novel regulator of yeast pseudohyphal differentiation, and related mammalian kinases. Mol Biol Cell 12:699–710 [CrossRef]
    [Google Scholar]
  125. Zhu G., Spellman P. T., Volpe T., Brown P. O., Botstein D., Davis T. N., Futcher B. 2000; Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406:90–94 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-893
Loading
/content/journal/micro/10.1099/00221287-148-4-893
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error