1887
Preview this article:
Zoom in
Zoomout

Sensing, signalling and integrating physical processes during invasive and filamentous growth, Page 1 of 1

| /docserver/preview/fulltext/micro/148/4/1480893a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-893
2002-04-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1480893a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-893&mimeType=html&fmt=ahah

References

  1. Ahn, S. H., Acurio, A. & Kron, S. J. ( 1999; ). Regulation of G2/M progression by the STE mitogen-activated protein kinase pathway in budding yeast filamentous growth. Mol Biol Cell 10, 3301-3316.[CrossRef]
    [Google Scholar]
  2. Andrews, D. L., Egan, J. D., Mayorga, M. E. & Gold, S. E. ( 2000; ). The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth. Mol Plant–Microbe Interact 13, 781-786.[CrossRef]
    [Google Scholar]
  3. Ansari, K., Martin, S., Farkasovsky, M., Ehbrecht, I. M. & Kuntzel, H. ( 1999; ). Phospholipase C binds to the receptor-like GPR1 protein and controls pseudohyphal differentiation in Saccharomyces cerevisiae. J Biol Chem 274, 30052-30058.[CrossRef]
    [Google Scholar]
  4. Bardwell, L., Cook, J. G., Zhu-Shimoni, J. X., Voora, D. & Thorner, J. ( 1998; ). Differential regulation of transcription: repression by unactivated mitogen-activated protein kinase Kss1 requires the Dig1 and Dig2 proteins. Proc Natl Acad Sci USA 95, 15400-15405.[CrossRef]
    [Google Scholar]
  5. Bennett, J. W. ( 1998; ). Mycotechnology: the role of fungi in biotechnology. J Biotechnol 66, 101-107.[CrossRef]
    [Google Scholar]
  6. Borges-Walmsley, M. I. & Walmsley, A. R. ( 2000; ). cAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends Microbiol 8, 133-141.[CrossRef]
    [Google Scholar]
  7. Bothast, R. J., Nichols, N. N. & Dien, B. S. ( 1999; ). Fermentations with new recombinant organisms. Biotechnol Prog 15, 867-875.[CrossRef]
    [Google Scholar]
  8. Bouquin, N., Barral, Y., Courbeyrette, R., Blondel, M., Snyder, M. & Mann, C. ( 2000; ). Regulation of cytokinesis by the Elm1 protein kinase in Saccharomyces cerevisiae. J Cell Sci 113, 1435-1445.
    [Google Scholar]
  9. Brown, A. J. & Gow, N. A. ( 1999; ). Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7, 333-338.[CrossRef]
    [Google Scholar]
  10. Brown, J. L. & Bussey, H. ( 1993; ). The yeast KRE9 gene encodes an O glycoprotein involved in cell surface beta-glucan assembly. Mol Cell Biol 13, 6346-6356.
    [Google Scholar]
  11. Cali, B. M., Doyle, T. C., Botstein, D. & Fink, G. R. ( 1998; ). Multiple functions for actin during filamentous growth of Saccharomyces cerevisiae. Mol Biol Cell 9, 1873-1889.[CrossRef]
    [Google Scholar]
  12. Carlson, M. ( 1999; ). Glucose repression in yeast. Curr Opin Microbiol 2, 202-207.[CrossRef]
    [Google Scholar]
  13. Chandarlapaty, S. & Errede, B. ( 1998; ). Ash1, a daughter cell-specific protein, is required for pseudohyphal growth of Saccharomyces cerevisiae. Mol Cell Biol 18, 2884-2891.
    [Google Scholar]
  14. Chant, J. ( 1999; ). Cell polarity in yeast. Annu Rev Cell Dev Biol 15, 365-391.[CrossRef]
    [Google Scholar]
  15. Chartrain, M., Salmon, P. M., Robinson, D. K. & Buckland, B. C. ( 2000; ). Metabolic engineering and directed evolution for the production of pharmaceuticals. Curr Opin Biotechnol 11, 209-214.[CrossRef]
    [Google Scholar]
  16. Christensen, B. & Nielsen, J. ( 2000; ). Metabolic network analysis. A powerful tool in metabolic engineering. Adv Biochem Eng Biotechnol 66, 209-231.
    [Google Scholar]
  17. Conlan, R. S. & Tzamarias, D. ( 2001; ). Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol 309, 1007-1015.[CrossRef]
    [Google Scholar]
  18. Conte, D.Jr & Curcio, M. J. ( 2000; ). Fus3 controls Ty1 transpositional dormancy through the invasive growth MAPK pathway. Mol Microbiol 35, 415-427.[CrossRef]
    [Google Scholar]
  19. Cook, J. G., Bardwell, L. & Thorner, J. ( 1997; ). Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature 390, 85-88.[CrossRef]
    [Google Scholar]
  20. Cullen, P. J. & Sprague, G. F.Jr ( 2000; ). Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A 97, 13619-13624.[CrossRef]
    [Google Scholar]
  21. Cullen, P. J., Schultz, J., Horecka, J., Stevenson, B. J., Jigami, Y. & Sprague, G. F.Jr ( 2000; ). Defects in protein glycosylation cause SHO1-dependent activation of a STE12 signaling pathway in yeast. Genetics 155, 1005-1018.
    [Google Scholar]
  22. Dohrmann, P. R., Voth, W. P. & Stillman, D. J. ( 1996; ). Role of negative regulation in promoter specificity of the homologous transcriptional activators Ace2p and Swi5p. Mol Cell Biol 16, 1746-1758.
    [Google Scholar]
  23. Donzeau, M. & Bandlow, W. ( 1999; ). The yeast trimeric guanine nucleotide-binding protein alpha subunit, Gpa2p, controls the meiosis-specific kinase Ime2p activity in response to nutrients. Mol Cell Biol 19, 6110-6119.
    [Google Scholar]
  24. D’Souza, C. A. & Heitman, J. ( 2001; ). Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25, 349-364.[CrossRef]
    [Google Scholar]
  25. Durrenberger, F., Wong, K. & Kronstad, J. W. ( 1998; ). Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis. Proc Natl Acad Sci U S A 95, 5684-5689.[CrossRef]
    [Google Scholar]
  26. Edgington, N. P., Blacketer, M. J., Bierwagen, T. A. & Myers, A. M. ( 1999; ). Control of Saccharomyces cerevisiae filamentous growth by cyclin-dependent kinase Cdc28. Mol Cell Biol 19, 1369-1380.
    [Google Scholar]
  27. Edskes, H. K., Hanover, J. A. & Wickner, R. B. ( 1999; ). Mks1p is a regulator of nitrogen catabolism upstream of Ure2p in Saccharomyces cerevisiae. Genetics 153, 585-594.
    [Google Scholar]
  28. Erdman, S., Lin, L., Malczynski, M. & Snyder, M. ( 1998; ). Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol 140, 461-483.[CrossRef]
    [Google Scholar]
  29. Feng, Q., Summers, E., Guo, B. & Fink, G. ( 1999; ). Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol 181, 6339-6346.
    [Google Scholar]
  30. Fujita, A., Tonouchi, A., Hiroko, T., Inose, F., Nagashima, T., Satoh, R. & Tanaka, S. ( 1999; ). Hsl7p, a negative regulator of Ste20p protein kinase in the Saccharomyces cerevisiae filamentous growth-signaling pathway. Proc Natl Acad Sci USA 96, 8522-8527.[CrossRef]
    [Google Scholar]
  31. Gagiano, M., van Dyk, D., Bauer, F. F., Lambrechts, M. G. & Pretorius, I. S. ( 1999; ). Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Microbiol 31, 103-116.[CrossRef]
    [Google Scholar]
  32. Galitski, T., Saldanha, A. J., Styles, C. A., Lander, E. S. & Fink, G. R. ( 1999; ). Ploidy regulation of gene expression. Science 285, 251-254.[CrossRef]
    [Google Scholar]
  33. Gancedo, J. M. ( 1998; ). Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62, 334-361.
    [Google Scholar]
  34. Gancedo, J. M. ( 2001; ). Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev 25, 107-123.[CrossRef]
    [Google Scholar]
  35. Gavrias, V., Andrianopoulos, A., Gimeno, C. J. & Timberlake, W. E. ( 1996; ). Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol Microbiol 19, 1255-1263.[CrossRef]
    [Google Scholar]
  36. Gibbs, P. A., Seviour, R. J. & Schmid, F. ( 2000; ). Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20, 17-48.[CrossRef]
    [Google Scholar]
  37. Gimeno, C. J. & Fink, G. R. ( 1994; ). Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 14, 2100-2112.
    [Google Scholar]
  38. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. ( 1992; ). Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077-1090.[CrossRef]
    [Google Scholar]
  39. Goodson, H. V., Anderson, B. L., Warrick, H. M., Pon, L. A. & Spudich, J. A. ( 1996; ). Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton. J Cell Biol 133, 1277-1291.[CrossRef]
    [Google Scholar]
  40. Guo, B., Styles, C. A., Feng, Q. & Fink, G. R. ( 2000; ). A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A 97, 12158-12163.[CrossRef]
    [Google Scholar]
  41. Hammond, J. R. ( 1995; ). Genetically-modified brewing yeasts for the 21st century. Progress to date. Yeast 11, 1613-1627.[CrossRef]
    [Google Scholar]
  42. Hollenhorst, P. C., Bose, M. E., Mielke, M. R., Muller, U. & Fox, C. A. ( 2000; ). Forkhead genes in transcriptional silencing, cell morphology and the cell cycle. Overlapping and distinct functions for FKH1 and FKH2 in Saccharomyces cerevisiae. Genetics 154, 1533-1548.
    [Google Scholar]
  43. Jansen, G., Buhring, F., Hollenberg, C. P. & Ramezani Rad, M. ( 2001; ). Mutations in the SAM domain of STE50 differentially influence the MAPK-mediated pathways for mating, filamentous growth and osmotolerance in Saccharomyces cerevisiae. Mol Genet Genomics 265, 102-117.[CrossRef]
    [Google Scholar]
  44. Jaquenoud, M. & Peter, M. ( 2000; ). Gic2p may link activated Cdc42p to components involved in actin polarization, including Bni1p and Bud6p (Aip3p). Mol Cell Biol 20, 6244-6258.[CrossRef]
    [Google Scholar]
  45. Khale, A. & Deshpande, M. V. ( 1992; ). Dimorphism in Benjaminiella poitrasii: cell wall chemistry of parent and two stable yeast mutants. Antonie Leeuwenhoek 62, 299-307.[CrossRef]
    [Google Scholar]
  46. Khazak, V., Sadhale, P. P., Woychik, N. A., Brent, R. & Golemis, E. A. ( 1995; ). Human RNA polymerase II subunit hsRPB7 functions in yeast and influences stress survival and cell morphology. Mol Biol Cell 6, 759-775.[CrossRef]
    [Google Scholar]
  47. King, L. & Butler, G. ( 1998; ). Ace2p, a regulator of CTS1 (chitinase) expression, affects pseudohyphal production in Saccharomyces cerevisiae. Curr Genet 34, 183-191.[CrossRef]
    [Google Scholar]
  48. Klasson, H., Fink, G. R. & Ljungdahl, P. O. ( 1999; ). Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol Cell Biol 19, 5405-5416.
    [Google Scholar]
  49. Kleyn, J. & Hough, J. ( 1971; ). The microbiology of brewing. Annu Rev Microbiol 25, 583-608.[CrossRef]
    [Google Scholar]
  50. Kobayashi, O., Yoshimoto, H. & Sone, H. ( 1999; ). Analysis of the genes activated by the FLO8 gene in Saccharomyces cerevisiae. Curr Genet 36, 256-261.[CrossRef]
    [Google Scholar]
  51. Kovacech, B., Nasmyth, K. & Schuster, T. ( 1996; ). EGT2 gene transcription is induced predominantly by Swi5 in early G1. Mol Cell Biol 16, 3264-3274.
    [Google Scholar]
  52. Kron, S. J. & Gow, N. A. ( 1995; ). Budding yeast morphogenesis: signalling, cytoskeleton and cell cycle. Curr Opin Cell Biol 7, 845-855.[CrossRef]
    [Google Scholar]
  53. Kron, S. J., Styles, C. A. & Fink, G. R. ( 1994; ). Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell 5, 1003-1022.[CrossRef]
    [Google Scholar]
  54. Kronstad, J., De Maria, A. D., Funnell, D., Laidlaw, R. D., Lee, N., de Sa, M. M. & Ramesh, M. ( 1998; ). Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways. Arch Microbiol 170, 395-404.[CrossRef]
    [Google Scholar]
  55. Kubler, E., Mosch, H. U., Rupp, S. & Lisanti, M. P. ( 1997; ). Gpa2p, a G-protein alpha-subunit, regulates growth and pseudohyphal development in Saccharomyces cerevisiae via a cAMP-dependent mechanism. J Biol Chem 272, 20321-20323.[CrossRef]
    [Google Scholar]
  56. Lambrechts, M. G., Bauer, F. F., Marmur, J. & Pretorius, I. S. ( 1996; ). Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A 93, 8419-8424.[CrossRef]
    [Google Scholar]
  57. Lee, B. N. & Elion, E. A. ( 1999; ). The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components. Proc Natl Acad Sci USA 96, 12679-12684.[CrossRef]
    [Google Scholar]
  58. Lengeler, K. B., Davidson, R. C., D’Souza, C., Harashima, T., Shen, W. C., Wang, P., Pan, X., Waugh, M. & Heitman, J. ( 2000; ). Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64, 746-785.[CrossRef]
    [Google Scholar]
  59. Li, W. & Mitchell, A. P. ( 1997; ). Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 145, 63-73.
    [Google Scholar]
  60. Liu, H., Styles, C. A. & Fink, G. R. ( 1996; ). Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144, 967-978.
    [Google Scholar]
  61. Lo, H. J., Kohler, J. R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A. & Fink, G. R. ( 1997; ). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939-949.[CrossRef]
    [Google Scholar]
  62. Lo, W. S. & Dranginis, A. M. ( 1998; ). The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9, 161-171.[CrossRef]
    [Google Scholar]
  63. Loeb, J. D., Kerentseva, T. A., Pan, T., Sepulveda-Becerra, M. & Liu, H. ( 1999; ). Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway. Genetics 153, 1535-1546.
    [Google Scholar]
  64. Longtine, M. S., Theesfeld, C. L., McMillan, J. N., Weaver, E., Pringle, J. R. & Lew, D. J. ( 2000; ). Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae. Mol Cell Biol 20, 4049-4061.[CrossRef]
    [Google Scholar]
  65. Lorenz, M. C. & Heitman, J. ( 1997; ). Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog. EMBO J 16, 7008-7018.[CrossRef]
    [Google Scholar]
  66. Lorenz, M. C. & Heitman, J. ( 1998a; ). Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics 150, 1443-1457.
    [Google Scholar]
  67. Lorenz, M. C. & Heitman, J. ( 1998b; ). The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J 17, 1236-1247.[CrossRef]
    [Google Scholar]
  68. Lorenz, M. C., Cutler, N. S. & Heitman, J. ( 2000a; ). Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol Biol Cell 11, 183-199.[CrossRef]
    [Google Scholar]
  69. Lorenz, M. C., Pan, X., Harashima, T., Cardenas, M. E., Xue, Y., Hirsch, J. P. & Heitman, J. ( 2000b; ). The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154, 609-622.
    [Google Scholar]
  70. Madden, K. & Snyder, M. ( 1998; ). Cell polarity and morphogenesis in budding yeast. Annu Rev Microbiol 52, 687-744.[CrossRef]
    [Google Scholar]
  71. Madhani, H. D., Styles, C. A. & Fink, G. R. ( 1997; ). MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91, 673-684.[CrossRef]
    [Google Scholar]
  72. Madhani, H. D., Galitski, T., Lander, E. S. & Fink, G. R. ( 1999; ). Effectors of a developmental mitogen-activated protein kinase cascade revealed by expression signatures of signaling mutants. Proc Natl Acad Sci U S A 96, 12530-12535.[CrossRef]
    [Google Scholar]
  73. Miled, C., Mann, C. & Faye, G. ( 2001; ). Xbp1-mediated repression of CLB gene expression contributes to the modifications of yeast cell morphology and cell cycle seen during nitrogen-limited growth. Mol Cell Biol 21, 3714-3724.[CrossRef]
    [Google Scholar]
  74. Morillon, A., Springer, M. & Lesage, P. ( 2000; ). Activation of the Kss1 invasive-filamentous growth pathway induces Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol Cell Biol 20, 5766-5776.[CrossRef]
    [Google Scholar]
  75. Moriya, H., Shimizu-Yoshida, Y., Omori, A., Iwashita, S., Katoh, M. & Sakai, A. ( 2001; ). Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. Genes Dev 15, 1217-1228.[CrossRef]
    [Google Scholar]
  76. Mosch, H. U. & Fink, G. R. ( 1997; ). Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145, 671-684.
    [Google Scholar]
  77. Mosch, H. U., Roberts, R. L. & Fink, G. R. ( 1996; ). Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93, 5352-5356.[CrossRef]
    [Google Scholar]
  78. Mosch, H. U., Kubler, E., Krappmann, S., Fink, G. R. & Braus, G. H. ( 1999; ). Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell 10, 1325-1335.[CrossRef]
    [Google Scholar]
  79. Mosch, H. U., Kohler, T. & Braus, G. H. ( 2001; ). Different domains of the essential GTPase Cdc42p required for growth and development of Saccharomyces cerevisiae. Mol Cell Biol 21, 235-248.[CrossRef]
    [Google Scholar]
  80. Murray, L. E., Rowley, N., Dawes, I. W., Johnston, G. C. & Singer, R. A. ( 1998; ). A yeast glutamine tRNA signals nitrogen status for regulation of dimorphic growth and sporulation. Proc Natl Acad Sci U S A 95, 8619-8624.[CrossRef]
    [Google Scholar]
  81. Ni, L. & Snyder, M. ( 2001; ). A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol Biol Cell 12, 2147-2170.[CrossRef]
    [Google Scholar]
  82. Oehlen, L. J. & Cross, F. R. ( 1998; ). Potential regulation of Ste20 function by the Cln1-Cdc28 and Cln2-Cdc28 cyclin-dependent protein kinases. J Biol Chem 273, 25089-25097.[CrossRef]
    [Google Scholar]
  83. O’Rourke, S. M. & Herskowitz, I. ( 1998; ). The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12, 2874-2886.[CrossRef]
    [Google Scholar]
  84. Ostergaard, S., Olsson, L. & Nielsen, J. ( 2000; ). Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64, 34-50.[CrossRef]
    [Google Scholar]
  85. Palecek, S. P., Parikh, A. S. & Kron, S. J. ( 2000; ). Genetic analysis reveals that FLO11 upregulation and cell polarization independently regulate invasive growth in Saccharomyces cerevisiae. Genetics 156, 1005-1023.
    [Google Scholar]
  86. Pan, X. & Heitman, J. ( 1999; ). Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19, 4874-4887.
    [Google Scholar]
  87. Pan, X. & Heitman, J. ( 2000; ). Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol 20, 8364-8372.[CrossRef]
    [Google Scholar]
  88. Pan, X., Harashima, T. & Heitman, J. ( 2000; ). Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Curr Opin Microbiol 3, 567-572.[CrossRef]
    [Google Scholar]
  89. Peter, M., Neiman, A. M., Park, H. O., van Lohuizen, M. & Herskowitz, I. ( 1996; ). Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J 15, 7046-7059.
    [Google Scholar]
  90. Posas, F., Takekawa, M. & Saito, H. ( 1998; ). Signal transduction by MAP kinase cascades in budding yeast. Curr Opin Microbiol 1, 175-182.[CrossRef]
    [Google Scholar]
  91. Pretorius, I. S. ( 2000; ). Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16, 675-729.[CrossRef]
    [Google Scholar]
  92. Pruyne, D. & Bretscher, A. ( 2000; ). Polarization of cell growth in yeast. J Cell Sci 113, 571-585.
    [Google Scholar]
  93. Radcliffe, P. A., Binley, K. M., Trevethick, J., Hall, M. & Sudbery, P. E. ( 1997; ). Filamentous growth of the budding yeast Saccharomyces cerevisiae induced by overexpression of the WHI2 gene. Microbiology 143, 1867-1876.[CrossRef]
    [Google Scholar]
  94. Roberts, R. L., Mosch, H. U. & Fink, G. R. ( 1997; ). 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae. Cell 89, 1055-1065.[CrossRef]
    [Google Scholar]
  95. Robertson, L. S. & Fink, G. R. ( 1998; ). The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A 95, 13783-13787.[CrossRef]
    [Google Scholar]
  96. Robertson, L. S., Causton, H. C., Young, R. A. & Fink, G. R. ( 2000; ). The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci U S A 97, 5984-5988.[CrossRef]
    [Google Scholar]
  97. Roemer, T., Vallier, L., Sheu, Y. J. & Snyder, M. ( 1998; ). The Spa2-related protein, Sph1p, is important for polarized growth in yeast. J Cell Sci 111, 479-494.
    [Google Scholar]
  98. Rolland, F., De Winde, J. H., Lemaire, K., Boles, E., Thevelein, J. M. & Winderickx, J. ( 2000; ). Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol 38, 348-358.[CrossRef]
    [Google Scholar]
  99. Rupp, S., Summers, E., Lo, H. J., Madhani, H. & Fink, G. ( 1999; ). MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18, 1257-1269.[CrossRef]
    [Google Scholar]
  100. Russell, M., Bradshaw-Rouse, J., Markwardt, D. & Heideman, W. ( 1993; ). Changes in gene expression in the Ras/adenylate cyclase system of Saccharomyces cerevisiae: correlation with cAMP levels and growth arrest. Mol Biol Cell 4, 757-765.[CrossRef]
    [Google Scholar]
  101. Sabbagh, W., Flatauer, L. J., Bardwell, A. J. & Bardwell, L. ( 2001; ). Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation. Mol Cell 8, 683-691.[CrossRef]
    [Google Scholar]
  102. San-Blas, G. ( 1993; ). Biochemical and physiological aspects in the dimorphism of Paracoccidioides brasiliensis. Arch Med Res 24, 267-268.
    [Google Scholar]
  103. San-Blas, G., Travassos, L. R., Fries, B. C. & 10 other authors ( 2000; ). Fungal morphogenesis and virulence. Med Mycol 38 (suppl. 1), 79–86.[CrossRef]
    [Google Scholar]
  104. Sanchez-Martinez, C. & Perez-Martin, J. ( 2001; ). Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis – similar inputs, different outputs. Curr Opin Microbiol 4, 214-221.[CrossRef]
    [Google Scholar]
  105. Sanders, S. L., Gentzsch, M., Tanner, W. & Herskowitz, I. ( 1999; ). O-Glycosylation of Axl2/Bud10p by Pmt4p is required for its stability, localization, and function in daughter cells. J Cell Biol 145, 1177-1188.[CrossRef]
    [Google Scholar]
  106. Schilling, C. H., Schuster, S., Palsson, B. O. & Heinrich, R. ( 1999; ). Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol Prog 15, 296-303.[CrossRef]
    [Google Scholar]
  107. Schroder, M., Chang, J. S. & Kaufman, R. J. ( 2000; ). The unfolded protein response represses nitrogen-starvation induced developmental differentiation in yeast. Genes Dev 14, 2962-2975.[CrossRef]
    [Google Scholar]
  108. Sheu, Y. J., Barral, Y. & Snyder, M. ( 2000; ). Polarized growth controls cell shape and bipolar bud site selection in Saccharomyces cerevisiae. Mol Cell Biol 20, 5235-5247.[CrossRef]
    [Google Scholar]
  109. Stanhill, A., Schick, N. & Engelberg, D. ( 1999; ). The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol Cell Biol 19, 7529-7538.
    [Google Scholar]
  110. Straver, M. H., vd Aar, P. C., Smit, G. & Kijne, J. W. ( 1993; ). Determinants of flocculence of brewer’s yeast during fermentation in wort. Yeast 9, 527-532.[CrossRef]
    [Google Scholar]
  111. Taheri, N., Kohler, T., Braus, G. H. & Mosch, H. U. ( 2000; ). Asymmetrically localized Bud8p and Bud9p proteins control yeast cell polarity and development. EMBO J 19, 6686-6696.[CrossRef]
    [Google Scholar]
  112. Tamaki, H., Miwa, T., Shinozaki, M., Saito, M., Yun, C. W., Yamamoto, K. & Kumagai, H. ( 2000; ). GPR1 regulates filamentous growth through FLO11 in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 267, 164-168.[CrossRef]
    [Google Scholar]
  113. Uren, A. G., Beilharz, T., O’Connell, M. J., Bugg, S. J., van Driel, R., Vaux, D. L. & Lithgow, T. ( 1999; ). Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proc Natl Acad Sci U S A 96, 10170-10175.[CrossRef]
    [Google Scholar]
  114. Viard, B. & Kuriyama, H. ( 1997; ). Phase-specific protein expression in the dimorphic yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 233, 480-486.[CrossRef]
    [Google Scholar]
  115. Ward, M. P., Gimeno, C. J., Fink, G. R. & Garrett, S. ( 1995; ). SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol 15, 6854-6863.
    [Google Scholar]
  116. Wartmann, T. & Kunze, G. ( 2000; ). Genetic transformation and biotechnological application of the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 54, 619-624.[CrossRef]
    [Google Scholar]
  117. Wilkinson, B. M., James, C. M. & Walmsley, R. M. ( 1996; ). Partial deletion of the Saccharomyces cerevisiae GDH3 gene results in novel starvation phenotypes. Microbiology 142, 1667-1673.[CrossRef]
    [Google Scholar]
  118. Wright, R. M., Repine, T. & Repine, J. E. ( 1993; ). Reversible pseudohyphal growth in haploid Saccharomyces cerevisiae is an aerobic process. Curr Genet 23, 388-391.[CrossRef]
    [Google Scholar]
  119. Xue, Y., Batlle, M. & Hirsch, J. P. ( 1998; ). GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. EMBO J 17, 1996-2007.[CrossRef]
    [Google Scholar]
  120. Yabe, T., Yamada-Okabe, T., Kasahara, S., Furuichi, Y., Nakajima, T., Ichishima, E., Arisawa, M. & Yamada-Okabe, H. ( 1996; ). HKR1 encodes a cell surface protein that regulates both cell wall beta-glucan synthesis and budding pattern in the yeast Saccharomyces cerevisiae. J Bacteriol 178, 477-483.
    [Google Scholar]
  121. Yang, S., Ayscough, K. R. & Drubin, D. G. ( 1997; ). A role for the actin cytoskeleton of Saccharomyces cerevisiae in bipolar bud-site selection. J Cell Biol 136, 111-123.[CrossRef]
    [Google Scholar]
  122. Yun, C. W., Tamaki, H., Nakayama, R., Yamamoto, K. & Kumagai, H. ( 1998; ). Gpr1p, a putative G-protein coupled receptor, regulates glucose-dependent cellular cAMP level in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 252, 29-33.[CrossRef]
    [Google Scholar]
  123. Zahner, J. E., Harkins, H. A. & Pringle, J. R. ( 1996; ). Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae. Mol Cell Biol 16, 1857-1870.
    [Google Scholar]
  124. Zhang, Z., Smith, M. M. & Mymryk, J. S. ( 2001; ). Interaction of the E1A oncoprotein with Yak1p, a novel regulator of yeast pseudohyphal differentiation, and related mammalian kinases. Mol Biol Cell 12, 699-710.[CrossRef]
    [Google Scholar]
  125. Zhu, G., Spellman, P. T., Volpe, T., Brown, P. O., Botstein, D., Davis, T. N. & Futcher, B. ( 2000; ). Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406, 90-94.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-893
Loading
/content/journal/micro/10.1099/00221287-148-4-893
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error