1887

Abstract

The consumption of poultry meat contaminated with is considered to be a risk factor for human campylobacteriosis. The development of targeted strategies to control campylobacters in broilers would benefit from knowledge of those bacterial factors important in colonization of the avian gut. During preliminary studies it was noted that NCTC 11168 was a poorer colonizer of chickens than strain 81116. This poor colonization could not be fully restored by passage, suggesting that it was a genetically endowed property of strain 11168. As the genome sequence is available for this strain, the technique of subtractive hybridization was used to identify gene fragments of strain 81116 not present in strain 11168. After two screening cycles, 24 out of 42 clones were identified as having DNA inserts specific for strain 81116. Six of these 24 clones contained gene fragment inserts with similarities to restriction–modification enzymes found in other bacteria. Two inserts had similarity to arsenic-resistance genes, whereas four others had similarities to cytochrome oxidase III, dTDP-glucose 4,6-dehydratase, γ-glutamyl transpeptidase and an abortive phage-resistance protein. At least some of these genes may be involved with colonization. A further six inserts had weak similarities to hypothetical proteins or to proteins with assigned functions from strain 11168. The remaining six clones had gene-fragment inserts with no database matches. Southern-blot analysis confirmed that strain-dependent variation existed for each of these DNA inserts. These results indicate that subtractive hybridization can successfully identify genes that are absent from the only strain for which the genome sequence is currently available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-1203
2002-04-01
2020-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1481203a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-1203&mimeType=html&fmt=ahah

References

  1. Allard S. T., Giraud M. F., Whitfield C., Messner P., Naismith J. H. 2000; The purification, crystallization and structural elucidation of dTDP-d-glucose 4,6-dehydratase (RmlB), the second enzyme of the dTDP-l-rhamnose synthesis pathway from Salmonella enterica serovar typhimurium . Acta Crystallogr D Biol Crystallogr56:222–225[CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  3. Ausubel S. F., Brent R., Kingston R. E. 7 other authors 1994; Current Protocols in Molecular Biology New York, NY: Wiley;
    [Google Scholar]
  4. Black R. E., Levine M. M., Clements M. L., Hughes T. P., Blaser M. J. 1988; Experimental Campylobacter jejuni infection in humans. J Infect Dis157:472–479[CrossRef]
    [Google Scholar]
  5. Bras A. M., Chatterjee S., Wren B. W., Newell D. G., Ketley J. M. 1999; A novel Campylobacter jejuni two-component regulatory system important for temperature-dependent growth and colonization. J Bacteriol181:3298–3302
    [Google Scholar]
  6. Carmel-Harel O., Storz G. 2000; Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol54:439–461[CrossRef]
    [Google Scholar]
  7. Cawthraw S. A., Wassenaar T. M., Ayling R., Newell D. G. 1996; Increased colonization potential of Campylobacter jejuni strain 81116 after passage through chickens and its implication on the rate of transmission within flocks. Epidemiol Infect117:213–215[CrossRef]
    [Google Scholar]
  8. Cervantes C., Ji G., Ramirez J. L., Silver S. 1994; Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev15:355–367
    [Google Scholar]
  9. Chang E. C., Kosman D. J., Willsky G. R. 1989; Arsenic oxide-induced thermotolerance in Saccharomyces cerevisiae . J Bacteriol171:6349–6352
    [Google Scholar]
  10. Chevalier C., Thiberge J. M., Ferrero R. L., Labigne A. 1999; Essential role of Helicobacter pylori gamma-glutamyltranspeptidase for the colonisation of the gastric mucosa of mice. Mol Microbiol31:1359–1372[CrossRef]
    [Google Scholar]
  11. Dingle K. E., Colles F. M., Wareing D. R. A. 7 other authors 2001; A multi locus sequence typing scheme for Campylobacter jejuni . J Clin Microbiol39:14–23[CrossRef]
    [Google Scholar]
  12. Dorrell N., Mangan J. A., Laing K. G. 9 other authors 2001; Whole genome comparison of C. jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res11:1706–1715[CrossRef]
    [Google Scholar]
  13. Gorelov A. V., Gorskaia E. M., Zhukhovitskii V. G., Bondarenko V. M. 1990; The adhesion of clinical isolates of Campylobacter jejuni to intestinal epithelial cells i n vitro . Zh Mikrobiol Epidemiol Immunobiol in Russianpt 7:3–6
    [Google Scholar]
  14. Gupta G., Charles S. 1999; Trace elements in soils fertilized with poultry litter. Poult Sci78:1695–1698[CrossRef]
    [Google Scholar]
  15. Korlath J. A., Osterholm M. T., Judy L. A., Forfang J. C., Robinson R. A. 1985; A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J Infect Dis152:592–596[CrossRef]
    [Google Scholar]
  16. Lan R., Reeves P. R. 2000; Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol8:396–401[CrossRef]
    [Google Scholar]
  17. Lindstedt B. A., Heir E., Vardund T., Melby K. K., Kapperud G. 2000; Comparative fingerprinting analysis of Campylobacter jejuni subsp. jejuni strains by amplified-fragment length polymorphism genotyping. J Clin Microbiol38:3379–3387
    [Google Scholar]
  18. McGovern K. J., Blanchard T. G., Gutierrez J. A., Czinn S. J., Krakowka S., Youngman P. 2001; Gamma-glutamyltransferase is a Helicobacter pylori virulence factor but is not essential for colonization. Infect Immun69:4168–4173[CrossRef]
    [Google Scholar]
  19. Miller W. G. others 2001; Characterization of multiple Campylobacter jejuni type I restriction–modification loci. In 11th International Workshop on Campylobacter, Helicobacter and Related Organisms pp79 Edited by Hacker J.. Freiburg: Urban & Fischer;
    [Google Scholar]
  20. Nachamkin I., Yang X. H., Stern N. J. 1993; Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Appl Environ Microbiol59:1269–1273
    [Google Scholar]
  21. Newell D. G., Wagenaar J. A. 2000; Poultry infections and their control at the farm level. In Campylobacter pp497–509 Edited by Nachamkin I., Blaser M. J.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Newell D. G., Shreeve J. E., Toszeghy M., Domingue G., Bull S., Humphrey T., Mead G. 2001; Changes in the carriage of Campylobacter strains by poultry carcasses during processing in abattoirs. Appl Environ Microbiol67:2636–2640[CrossRef]
    [Google Scholar]
  23. Owen R. J., Slater E., Telford D., Donovan T., Barnham M. 1997; Subtypes of Campylobacter jejuni from sporadic cases of diarrhoeal disease at different locations in England are highly diverse. Eur J Epidemiol13:837–840[CrossRef]
    [Google Scholar]
  24. Palmer S. R., Gully P. R., White J. M., Pearson A. D., Suckling W. G., Jones D. M., Rawes J. C., Penner J. L. 1983; Water-borne outbreak of Campylobacter gastroenteritis. Lancet1:287–290
    [Google Scholar]
  25. Pang T., Wong P. Y., Puthucheary S. D., Sihotang K., Chang W. K. 1987; In vitro and in vivo studies of a cytotoxin from Campylobacter jejuni . J Med Microbiol23:193–198[CrossRef]
    [Google Scholar]
  26. Parkhill J., Wren B. W., Mungall K. 18 other authors 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403:665–668[CrossRef]
    [Google Scholar]
  27. Pergantis S. A., Heithmar E. M., Hinners T. A. 1997; Speciation of arsenic animal feed additives by microbore high-performance liquid chromatography with inductively coupled plasma mass spectrometry. Analyst122:1063–1068[CrossRef]
    [Google Scholar]
  28. Purdy D., Cawthraw S., Dickinson J. H., Newell D. G., Park S. F. 1999; Generation of a superoxide dismutase (SOD)-deficient mutant of Campylobacter coli : evidence for the significance of SOD in Campylobacter survival and colonization. Appl Environ Microbiol65:2540–2546
    [Google Scholar]
  29. Skirrow M. B. 1977; Campylobacter enteritis: a new disease. Br Med J2:9–11[CrossRef]
    [Google Scholar]
  30. Tauxe R. E. 1992; Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In Campylobacter jejuni: Current Status and Future Trends . pp9–19 Edited by Nachamkin I., Blaser M. J., Tompkins L. S.. Washington, DC: American Society for Microbiology;
  31. Wassenaar T. M., Blaser M. J. 1999; Pathophysiology of Campylobacter jejuni infections of humans. Microbes Infect1:1023–1033[CrossRef]
    [Google Scholar]
  32. Wassenaar T. M., van der Zeijst B. A., Ayling R., Newell D. G. 1993; Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J Gen Microbiol139:1171–1175[CrossRef]
    [Google Scholar]
  33. Ziprin R. L., Young C. R., Stanker L. H., Hume M. E., Konkel M. E. 1999; The absence of cecal colonization of chicks by a mutant of Campylobacter jejuni not expressing bacterial fibronectin-binding protein. Avian Dis43:586–589[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-1203
Loading
/content/journal/micro/10.1099/00221287-148-4-1203
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error