1887

Abstract

Tamm–Horsfall glycoprotein (THP), which is synthesized by renal tubular cells, is the most abundant protein in normal human urine. Although its physiological function remains unclear, it has been proposed that THP may act as a defence factor against urinary tract infections by inhibiting the binding of S- and P-fimbriated to renal epithelial cells. Because THP-related proteins are also found in the superficial layers of the oral mucosa, the authors investigated the ability of THP to interfere with the cytoadherence of pathogenic bacteria that colonize mucosal surfaces other than those of the urogenital tract. In this report, it is shown that THP binds to virulent and reduces its adherence to both renal and pulmonary epithelial cells. This cytoadherence inhibitory effect was not observed with a mutant lacking the pertussis toxin (PTX) operon, and was dependent on the direct interaction of THP with the S2 subunit within the PTX B oligomer. The authors also show that the glycosylation moiety of THP is crucial for its binding to PTX. The THP–PTX interaction was exploited to develop an affinity chromatography method that allows a one-step purification of active PTX. These observations suggest that besides its anti-adherence activity, THP may also trap toxins produced by pathogenic bacteria that colonize mucosal surfaces.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-1193
2002-04-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1481193a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-1193&mimeType=html&fmt=ahah

References

  1. Antoine R., Locht C. 1990; Roles of the disulfide bond and the carboxy-terminal region of the S1 subunit in the assembly and biosynthesis of pertussis toxin. Infect Immun58:1518–1526
    [Google Scholar]
  2. Antoine R., Alonso S., Raze D., Coutte L., Lesjean S., Willery E., Locht C., Jacob-Dubuisson F. 2000; New virulence-activated and virulence-repressed genes identified by systematic gene inactivation and generation of transcriptional fusions in Bordetella pertussis . J Bacteriol182:5902–5905[CrossRef]
    [Google Scholar]
  3. Bachmann S., Metzger B., Bunnemann M., Kriz W. 1990; Tamm–Horsfall protein-mRNA is localized in the thick ascending limb of Henle’s loop in rat kidney. Histochem J94:517–523[CrossRef]
    [Google Scholar]
  4. Bjugn R., Flood P. R. 1988; Scanning electron microscopy of human urine and purified Tamm–Horsfall’s glycoprotein. Scand J Urol Nephrol22:313–315[CrossRef]
    [Google Scholar]
  5. Bordet J., Gengou O. 1906; Le microbe de la coqueluche. Ann Inst Pasteur20:731–741
    [Google Scholar]
  6. Brennan M. J., David J. L., Kenimer J. G., Manclark C. R. 1988; Lectin-like binding of pertussis toxin to a 165-kilodalton Chinese hamster ovary cell glycoprotein. J Biol Chem263:4895–4899
    [Google Scholar]
  7. Burns D. L., Kenimer J. G., Manclark C. R. 1987; Role of the A subunit of pertussis toxin in alteration of Chinese hamster ovary cell morphology. Infect Immun55:24–28
    [Google Scholar]
  8. Easton R. L., Patankar M. S., Clark G. F., Morris H. R., Dell A. 2000; Pregnancy-associated changes in the glycosylation of Tamm–Horsfall glycoprotein. J Biol Chem275:21928–21938[CrossRef]
    [Google Scholar]
  9. Fletcher A. P., Neuberger A., Ratcliffe W. A. 1970; Tamm–Horsfall urinary glycoprotein: the chemical composition. Biochem J120:417–424
    [Google Scholar]
  10. Francotte M., Locht C., Feron C., Capiau C, de Wilde M. 1989; Monoclonal antibodies specific for pertussis toxin subunits and identification of the haptoglobin binding site. In Vaccines 89 pp243–247 Edited by Lerner R. A., Ginsberg H., Chanock R. M., Brown R.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  11. Friedmann T., Johnson P. 1966; The disaggregation of Tamm–Horsfall mucoprotein by acetic acid. Biochim Biophys Acta121:292–297[CrossRef]
    [Google Scholar]
  12. Hard K., van Zadelhoff G., Moonen P., Kamerling J. P., Vliegenthart J. F. G. 1992; The Asn-linked carbohydrate chains of human Tamm–Horsfall glycoprotein of one male. Eur J Biochem209:895–915[CrossRef]
    [Google Scholar]
  13. Hewlett E. L., Sauer K. T., Myers G. A., Cowell J. L., Guerrant R. L. 1983; Induction of a novel morphological response in chinese hamster ovary cells by pertussis toxin. Infect Immun40:1198–1203
    [Google Scholar]
  14. Horton J. K., Davies M., Topley N., Thomas D., Williams J. D. 1990; Activation of the inflammatory response of neutrophils by Tamm–Horsfall glycoprotein. Kidney Int37:717–726[CrossRef]
    [Google Scholar]
  15. Howie A. J., Lote C. J., Cunningham A. A., Zaccone G., Fasulo S. 1993; Distribution of immunoreactive Tamm–Horsfall protein in various species in the vertebrate classes. Cell Tissue Res274:15–19[CrossRef]
    [Google Scholar]
  16. Hunt J. S., McGiven A. R., Groufsky A., Lynn K. L., Taylor M. C. 1985; Affinity-purified antibodies of defined specificity for use in a solid-phase microplate radioimmunoassay of human Tamm–Horsfall glycoprotein in urine. Biochem J227:957–963
    [Google Scholar]
  17. Imaizumi A., Suzuki Y., Ono S., Sato H., Sato Y. 1983; Effect of heptakis (2,6- O -dimethyl)-β-cyclodextrin on the production of pertussis toxin by Bordetella pertussis . Infect Immun41:1138–1143
    [Google Scholar]
  18. Kumar S., Muchmore A. 1990; Tamm–Horsfall protein-uromodulin (1950–1990). Kidney Int37:1395–1401[CrossRef]
    [Google Scholar]
  19. Kuriyama S. M., Silverblatt F. J. 1986; Effect of Tamm–Horsfall urinary glycoprotein on phagocytosis and killing of type I-fimbriated Escherichia coli . Infect Immun51:193–198
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  21. Leeker A., Kreft B., Sandmann J., Bates J., Wasenauer G., Müller H., Sack K., Kumar S. 1997; Tamm–Horsfall protein inhibits binding of S- and P-fimbriated Escherichia coli to human renal tubular epithelial cells. Exp Nephrol5:38–46
    [Google Scholar]
  22. Lobet Y., Feron C., Dequesne G., Simoen E., Hauser P., Locht C. 1993; Site-specific alterations in the B oligomer that affect receptor-binding activities and mitogenicity of pertussis toxin. J Exp Med177:79–89[CrossRef]
    [Google Scholar]
  23. Locht C., Geoffroy M.-C., Renauld G. 1992; Common accessory genes for the Bordetella pertussis filamentous hemagglutinin and fimbriae share sequence similarities with the papC and papD gene families. EMBO J11:3175–3183
    [Google Scholar]
  24. Locht C., Bertin P., Menozzi F. D., Renauld G. 1993; The filamentous haemagglutinin, a multifaceted adhesin produced by virulent Bordetella spp. Mol Microbiol9:653–660[CrossRef]
    [Google Scholar]
  25. Menozzi F. D., Gantiez C., Locht C. 1991; Identification and purification of transferrin- and lactoferrin-binding proteins of Bordetella pertussis and Bordetella bronchiseptica . Infect Immun59:3982–3988
    [Google Scholar]
  26. Menozzi F. D., Mutombo R., Renauld G., Gantiez C., Hannah J. H., Leininger E., Brennan M. J., Locht C. 1994a; Heparin-inhibitable lectin activity of the filamentous hemagglutinin adhesin of Bordetella pertussis . Infect Immun62:769–778
    [Google Scholar]
  27. Menozzi F. D., Boucher P. E., Riveau G., Gantiez C., Locht C. 1994b; Surface-associated filamentous hemagglutinin induces autoagglutination of Bordetella pertussis . Infect Immun62:4261–4269
    [Google Scholar]
  28. Orskov I., Ferencz A., Orskov F. 1980; Tamm–Horsfall protein or uromucoid is the normal urinary slime that traps type I fimbriated Escherichia coli . Lancet i:887:
    [Google Scholar]
  29. Pak J., Pu Y., Zhang Z.-T., Hasty D. L., Wu X.-R. 2001; Tamm–Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem276:9924–9930[CrossRef]
    [Google Scholar]
  30. Pison U., Max M., Neuendank A., Weissbach S., Pietschmann S. 1994; Host defence capacities of pulmonary surfactant: evidence for ‘non-surfactant’ functions of the surfactant system. Eur J Clin Invest24:586–599[CrossRef]
    [Google Scholar]
  31. Sekura R. D., Fish F., Manclark C. R., Meade B., Zhang Y.-L. 1983; Pertussis toxin. Affinity purification of a new ADP-ribosyltransferase. J Biol Chem258:14647–14651
    [Google Scholar]
  32. Tamm I., Horsfall F. L. 1952; A mucoprotein derived from human urine which reacts with influenza, mumps, and Newcastle disease viruses. J Exp Med95:71–97
    [Google Scholar]
  33. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA76:4350–4354[CrossRef]
    [Google Scholar]
  34. Uhl M. A., Miller J. F. 1995; Bordetella pertussis BvgAS virulence control system. In Two-component Signal Transduction pp333–349 Edited by Hoch J., Silhavy T.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Witvliet M. H., Burns D. L., Brennan M. J., Poolman J. T., Manclark C. R. 1989; Binding of pertussis toxin to eucaryotic cells and glycoproteins. Infect Immun57:3324–3330
    [Google Scholar]
  36. Worcester E., Nakagawa Y., Wabner C. L., Kumar S., Coe F. L. 1988; Crystal adsorption and growth slowing by nephrocalcin, albumin, and Tamm–Horsfall protein. Am J Physiol255:F1197–F1205
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-1193
Loading
/content/journal/micro/10.1099/00221287-148-4-1193
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error