1887

Abstract

A gene encoding 1,3-β-glucanase was isolated from based on an activity plate assay. Analysis of the deduced amino acid sequence of the gene revealed that the matured 1,3-β-glucanase has two functional domains separated by a stretch of nine glycine residues. The N-terminal domain shares sequence similarity with bacterial endo-1,3-β-glucanases classified in glycosyl hydrolase family 16 (GHF 16), while the C-terminal domain is a putative carbohydrate-binding module (CBM) grouped into CBM family 6. To characterize the function of each domain, both the full-length and the CBM-truncated versions of the protein were expressed in and purified to homogeneity. Biochemical data suggest that the glycosyl hydrolase domain preferentially catalyses the hydrolysis of glucans with 1,3-β linkage, and has an endolytic mode of action. Binding assay indicated that the C-terminal CBM binds to various insoluble β-glucans (1,3-, 1,3–1,4- and 1,4- linkages) but not to xylan, a primary binding target for most members of CBM family 6. The full-length and the CBM-truncated proteins had similar specific activity (units per mol of hydrolase domain) on soluble 1,3-β-glucan, whereas the former had much stronger specific activity on insoluble 1,3-β-glucans, suggesting that the C-terminal CBM enhances the activity of the 1,3-β-glucanase against insoluble substrates, presumably by increasing the frequency of encounter events between the hydrolase domain and the substrate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-1151
2002-04-01
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1481151a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-1151&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A., Zhang A. J. Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Béguin P. 1983; Detection of cellulose activity in polyacrylamide gels using Congo red-stained agar replica. Anal Biochem 131:333–336 [CrossRef]
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  4. Bucciaglia P. A., Smith A. G. 1994; Cloning and characterization of Tag 1, a tobacco anther β-1,3-glucanase expressed during tetrad dissolution. Plant Mol Biol 24:903–914 [CrossRef]
    [Google Scholar]
  5. Castresana C., de Carvalho F., Gheysen G., Habets M., Inze D., van Montagu M. 1990; Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia β-1,3-glucanase gene. Plant Cell 2:1131–1143
    [Google Scholar]
  6. Chang M. M., Culley D. E., Hadwiger L. A. 1993; Nucleotide sequence of a pea ( Pisum sativum L.) β-1,3-glucanase gene. Plant Physiol 101:1121–1122 [CrossRef]
    [Google Scholar]
  7. Chen C. H., Huang J. W., Tzeng D. S. 2000; Development of PMS 502- Streptomyces biopesticide and evaluation of its efficacy on the control of crop fungal diseases. Plant Pathol Bull 9:193 in Chinese
    [Google Scholar]
  8. Chye M. L., Cheung K. Y. 1995; β-1,3-Glucanase is highly expressed in laticifers of Hevea brasiliensis . Plant Mol Biol 29:397–402 [CrossRef]
    [Google Scholar]
  9. de la Cruz J., Pintor-Toro J. A., Benitez T., Llobell A., Romero L. C. 1995; A novel endo-β-1,3-glucanase, BGN13.1, involved in the mycoparasitism of Trichoderma harzianum . J Bacteriol 177:6937–6945
    [Google Scholar]
  10. de Loose M., Alliotte T., Gheysen G., Genetello C., Gielen J., Soetaert P, van Montagu M., Inze D. 1988; Primary structure of a hormonally regulated β-glucanase of Nicotiana plumbaginifolia . Gene 70:13–23 [CrossRef]
    [Google Scholar]
  11. Doi K., Doi A. 1986; Cloning and expression in Escherichia coli of the gene for an Arthrobacter 1,3-β-glucanase. J Bacteriol 168:1272–1276
    [Google Scholar]
  12. Ferrer P., Halkier T., Hedegaard L., Savva D., Diers I., Asenjo J. A. 1996; Nucleotide sequence of a β-1,3-glucanase isoenzyme IIA gene of Oerskovia xanthineolytica LL G109 ( Cellulomonas cellulans ) and initial characterization of the recombinant enzyme expressed in Bacillus subtilis . J Bacteriol 178:4751–4757
    [Google Scholar]
  13. Fontes C. M. G. A., Clarke J. H., Hazlewood G. P., Fernandes T. H., Gilbert H. J., Ferreira L. M. A. 1998; Identification of tandemly repeated type VI cellulose-binding domains in an endoglucanase from the aerobic soil bacterium Cellvibrio mixtus. Appl Microbiol Biotechnol 49:552–559 [CrossRef]
    [Google Scholar]
  14. Fried B., Sherma J. 1982 Thin-layer Chromatography: Techniques and Applications New York: Marcel Dekker;
    [Google Scholar]
  15. Grenier J., Potvin C., Asselin A. 1993; Barley pathogenesis-related proteins with fungal cell wall lytic activity inhibit the growth of yeasts. Plant Physiol 103:1277–1283 [CrossRef]
    [Google Scholar]
  16. Gueguen Y., Voorhorst W. G. B., van der Oost J., de Vos W. M. 1997; Molecular and biochemical characterization of an endo-β-1,3-glucanase of the hyperthermophilic archaeon Pyrococcus furiosus . J Biol Chem 272:31258–31264 [CrossRef]
    [Google Scholar]
  17. Hahn M., Keitel T., Heinemann U. 1995; Crystal and molecular structure at 0·16-nm resolution of the hybrid Bacillus endo-1,3–1,4-β-d-glucan 4-glucanohydrolase H (A16-M). Eur J Biochem 232:849–858 [CrossRef]
    [Google Scholar]
  18. Henrissat B. 1991; A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316
    [Google Scholar]
  19. Henrissat B., Bairoch A. 1993; New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788
    [Google Scholar]
  20. Hudspeth R. L., Hobbs S. L., Anderson D. M., Grula J. W. 1996; Characterization and expression of chitinase and 1,3-β-glucanase genes in cotton. Plant Mol Biol 31:911–916 [CrossRef]
    [Google Scholar]
  21. Juncosa M., Pons J., Dot T., Querol E., Planas A. 1994; Identification of active site carboxylic residues in Bacillus licheniformis 1,3–1,4-β-d-glucan 4-glucanohydrolase by site-directed mutagenesis. J Biol Chem 269:14530–14535
    [Google Scholar]
  22. Keitel T., Simon O., Borriss R., Heinemann U. 1993; Molecular and active-site structure of a Bacillus 1,3–1,4-β-glucanase. Proc Natl Acad Sci USA 90:5287–5291 [CrossRef]
    [Google Scholar]
  23. Krah M., Misselwitz R., Politz O., Tomsen K. K., Welfle H., Borriss R. 1998; The laminarinase from thermophilic eubacterium Rhodothermus marinus : conformation, stability, and identification of active site carboxylic residues by site directed mutagenesis. Eur J Biochem 257:101–111 [CrossRef]
    [Google Scholar]
  24. Mahasneh A. M., Stewart D. J. 1980; A medium for detecting β-(1,3)-glucanase activity in bacteria. J Appl Bacteriol 48:457–458 [CrossRef]
    [Google Scholar]
  25. Mohagheghpour N., Dawson M., Hobbs P. 7 other authors 1995; Glucans as immunological adjuvants. Adv Exp Med Biol 383:13–22
    [Google Scholar]
  26. Nossal N. G., Heppel L. A. 1966; The release of enzyme by osmotic shock from Escherichia coli in exponential phase. J Biol Chem 241:3055–3062
    [Google Scholar]
  27. Oh H. Y., Yang M. S. 1995; Nucleotide sequence of genomic DNA encoding the potato β-1,3-glucanase. Plant Physiol 107:1453 [CrossRef]
    [Google Scholar]
  28. Okada T., Aisaka M., Aida K., Nikaidou N., Tanaka H., Watanabe T. 1995; Structure of the gene encoding β-1,3-glucanase B of Bacillus circulans WL-12. J Ferment Bioeng 80:229–236 [CrossRef]
    [Google Scholar]
  29. Rios-Hernandez M., Dos-Santos N., Silvia-Cardoso J., Bello-Garciga J. L., Pedroso M. 1994; Immunopharmacological studies of β-1,3-glucan. Arch Med Res 25:179–180
    [Google Scholar]
  30. Ryan E. M., Ward O. P. 1985; Study of the effect of β-1,3-glucanase from basidiomycete QM 806 on yeast extract production. Biotechnol Lett 7:409–412 [CrossRef]
    [Google Scholar]
  31. Sakellaris H., Pemberton J. M., Manners J. M. 1990; Gene from Cellvibrio mixtus encoding a β-1,3-endoglucanase. Appl Environ Microbiol 56:3204–3208
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Shen S. H., Chretien P., Bastien L., Slilaty S. N. 1991; Primary sequence of the glucanase gene from Oerskovia xanthineolytica : expression and purification of the enzyme from Escherichia coli . J Biol Chem 15:1058–1063
    [Google Scholar]
  34. Spilliaert R., Hreggvidsson G. O., Kristjansson J. K., Eggertsson G., Palsdottir A. 1994; Cloning and sequencing of a Rhodothermus marinus gene, bglA , coding for a thermostable β-glucanase and its expression in Escherichia coli . Eur J Biochem 224:923–930 [CrossRef]
    [Google Scholar]
  35. Sun J. L., Sakka K., Karita S., Kimura T., Ohmiya K. 1998; Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the important of the CBDs to xylan hydrolysis. J Ferment Bioeng 85:63–68 [CrossRef]
    [Google Scholar]
  36. Sun L., Gurnon J. R., Adams B. J., Graves M. V., van Etten J. L. 2000; Characterization of a β-1,3-glucanase encoded by chlorella virus PBCV-1. Virology 276:27–36 [CrossRef]
    [Google Scholar]
  37. Tomme P., Creagh A. L., Kilburn D. G., Haynes C. A. 1996; Interaction of polysaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC. I. Binding specificity and calorimetric analysis. Biochemistry 35:13885–13894 [CrossRef]
    [Google Scholar]
  38. von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690 [CrossRef]
    [Google Scholar]
  39. Watanabe T., Kasahara N., Aida K., Tanaka H. 1992; Three N-terminal domains of β-1,3-glucanase A1 are involved in binding to insoluble β-1,3-glucan. J Bacteriol 174:186–190
    [Google Scholar]
  40. Wood T. M., Bhat K. M. 1988; Methods for measuring cellulase activities. Methods Enzymol 160:87–112
    [Google Scholar]
  41. Yahata N., Watanabe T., Nakamura Y., Yamamoto Y., Kamimiya S., Tanaka H. 1990; Structure of the gene encoding β-1,3-glucanase A1 of Bacillus circulans WL-12. Gene 86:113–117 [CrossRef]
    [Google Scholar]
  42. Yamamoto M., Ezure T., Watanabe T., Tanaka H., Aono R. 1998; C-terminal domain of β-1,3-glucanase H in Bacillus circulans IAM1165 has a role in binding to insoluble β-1,3-glucan. FEBS Lett 433:41–43 [CrossRef]
    [Google Scholar]
  43. Yi S. Y., Hwang B. K. 1997; Purification and antifungal activity of a basic 34 kDa β-1,3-glucanase from soybean hypocotyls inoculated with Phytophthora sojae f. sp. glycines. Mol Cells 7:408–413
    [Google Scholar]
  44. Zverlov V. V., Volkov I. Y., Velikodvorskaya T. V., Schwarz W. H. 1997; Highly thermostable endo-1,3-β-glucanase (laminarinase) LamA from Thermotoga neapolitana : nucleotide sequence of the gene and characterization of the recombinant gene product. Microbiology 143:1701–1708 [CrossRef]
    [Google Scholar]
  45. Zverlov V. V., Volkov I. Y., Velikodvorskaya G. A., Schwarz W. H. 2001; The binding pattern of two carbohydrate-binding modules of laminarinase Lam16A from Thermotoga neapolitana : differences in β-glucan binding within family CBM4. Microbiology 147:621–629
    [Google Scholar]
/content/journal/micro/10.1099/00221287-148-4-1151
Loading
/content/journal/micro/10.1099/00221287-148-4-1151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error