Efflux of organic acids in is an energy-spilling process, adjusting the catabolic carbon flow to the nutrient supply and the activity of catabolic pathways Free

Abstract

Continuous cultivation was used to study the effect of glucose, ammonium, nitrate or phosphate limitation on the excretion of tricarboxylic acid (TCA) cycle intermediates by . Additionally, the effect of benzoic acid, salicylhydroxamic acid (SHAM) and 2,4-dinitrophenol on TCA cycle intermediates was studied. The physiological state of the fungus was characterized by its glucose and O consumption, its CO production, its intra- and extracellular concentrations of TCA cycle intermediates, as well as by its biomass yield, its maintenance coefficient and its respiratory quotient. The excretion of TCA cycle intermediates was observed during ammonium-, nitrate- and phosphate-limited growth. The highest productivity was found with phosphate-limited growth. The respiratory quotient was 13 under ammonium limitation and 07 under phosphate limitation. Citrate was always the main excreted intermediate. This justifies calling this excretion an energy-spilling process, because citrate excretion avoids the synthesis of too much NADH. The addition of benzoic acid further increased the excretion of TCA cycle intermediates by ammonium-limited hyphae. A SHAM-sensitive respiration was constitutively present during ammonium-limited growth of the fungus. The sum of the excreted organic acids was negatively correlated with the biomass yield ( ).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-1143
2002-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1481143a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-1143&mimeType=html&fmt=ahah

References

  1. Babel W., Brinkmann U., Müller R. H. 1993; The auxiliary substrate concept – an approach for overcoming limits of microbial performances. Acta Biotechnol 13:211–242 [CrossRef]
    [Google Scholar]
  2. Burgstaller W., Strasser H., Wöbking H., Schinner F. 1992; Solubilization of zinc oxide from filter dust with Penicillium simplicissimum : bioreactor leaching and stoichiometry. Environ Sci Technol 26:340–346 [CrossRef]
    [Google Scholar]
  3. Burgstaller W., Zanella A., Schinner F. 1994; Buffer-stimulated citrate efflux in Penicillium simplicissimum : an alternative charge balancing ion flow in case of reduced proton backflow?. Arch Microbiol 161:75–81 [CrossRef]
    [Google Scholar]
  4. Christensen L. H., Henriksen C. M., Nielsen J., Villadsen J., Egel-Mitani M. 1995; Continuous cultivation of Penicillium chrysogenum . Growth on glucose and penicillin production. J Biotechnol 42:95–107 [CrossRef]
    [Google Scholar]
  5. Foster J. W. 1949 Chemical Activities of Fungi New York: Academic Press;
    [Google Scholar]
  6. Franz A., Burgstaller W., Müller B., Schinner F. 1993; Influence of medium components and metabolic inhibitors on citric acid production by Penicillium simplicissimum . J Gen Microbiol 139:2101–2107 [CrossRef]
    [Google Scholar]
  7. Gallmetzer M., Burgstaller W. 2001; Citrate efflux in glucose-limited and glucose-sufficient chemostat culture of Penicillium simplicissimum . Antonie Leeuwenhoek 79:81–87 [CrossRef]
    [Google Scholar]
  8. Gallmetzer M., Müller B., Burgstaller W. 1998; Net excretion of citrate in Penicillium simplicissimum is mediated by a transport protein. Arch Microbiol 169:353–359 [CrossRef]
    [Google Scholar]
  9. Holms H. 1996; Flux analysis and control of the central metabolic pathways in Escherichia coli . FEMS Microbiol Rev 19:85–116 [CrossRef]
    [Google Scholar]
  10. Hueting S., Tempest D. W. 1979; Influence of the glucose input concentration on the kinetics of metabolite production by Klebsiella aerogenes NCTC 418 growing in chemostat culture in potassium- or ammonia-limited environments. Arch Microbiol 123:189–194 [CrossRef]
    [Google Scholar]
  11. Kirimura K., Hirowatari Y., Usami S. 1987; Alterations of respiratory systems in Aspergillus niger under the conditions of citric acid fermentation. Agric Biol Chem 51:1299–1303 [CrossRef]
    [Google Scholar]
  12. Kristiansen B., Charley R. 1981; Continuous process for production of citric acid. In Advances in Biotechnology I: Proceedings of the 6th International Fermentation Symposium pp 221–227 Edited by Moo-Young M. Toronto: Pergamon Press;
    [Google Scholar]
  13. Kristiansen B., Sinclair C. G. 1979; Production of citric acid in continuous culture. Biotechnol Bioeng 21:297–315 [CrossRef]
    [Google Scholar]
  14. Kristiansen B., Mattey M., Linden J. 1999 Citric Acid Biotechnology London: Taylor & Francis;
    [Google Scholar]
  15. Krzystek L., Gluszcz P., Ledakowicz S. 1996; Determination of yield and maintenance coefficients in citric acid production by Aspergillus niger . Chem Eng J 62:215–222
    [Google Scholar]
  16. Kubicek C. P., Zehentgruber O., El-Kalak H., Röhr M. 1980; Regulation of citric acid production by oxygen: effect of dissolved oxygen tension on adenylate levels and respiration in Aspergillus niger . Eur J Appl Microbiol Biotechnol 9:101–115 [CrossRef]
    [Google Scholar]
  17. Linton J. D. 1991; Metabolite production and growth efficiency. Antonie Leeuwenhoek 60:293–311 [CrossRef]
    [Google Scholar]
  18. Liu Y. 1998; Energy uncoupling in microbial growth under substrate-sufficient conditions. Appl Microbiol Biotechnol 49:500–505 [CrossRef]
    [Google Scholar]
  19. Liu J.-S., Schill N., van Gulik W. M., Voisard D., Marison I. W., von Stockar U. 1999; The coupling between catabolism and anabolism of Methanobacterium thermoautotrophicum in H2- and iron-limited continuous culture. Enzyme Microb Technol 25:784–794 [CrossRef]
    [Google Scholar]
  20. Luedeking R., Piret E. L. 1959; A kinetic study of the lactic acid fermentation. J Biochem Technol Eng 1:393–412
    [Google Scholar]
  21. McIntyre M., McNeil B. 1997; Dissolved carbon dioxide effects on morphology, growth, and citrate production in Aspergillus niger A60. Enzyme Microb Technol 20:135–142 [CrossRef]
    [Google Scholar]
  22. Metwally M., el Sayed M., Osman M., Hanegraaf P. P. F., Stouthamer A. H., van Verseveld H. W. 1991; Bioenergetic consequences of glucoamylase production in carbon-limited chemostat culture of Aspergillus niger . Antonie Leeuwenhoek 59:35–43 [CrossRef]
    [Google Scholar]
  23. Neijssel O. M., Tempest D. W. 1975; The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture. Arch Microbiol 106:251–258 [CrossRef]
    [Google Scholar]
  24. Netik A., Torres N. V., Riol J. M., Kubicek C. P. 1997; Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim Biophys Acta 1326287–294 [CrossRef]
    [Google Scholar]
  25. Ng A. M. L., Smith J. E., McIntosh A. F. 1973; Conidiation of Aspergillus niger in continuous culture. Arch Microbiol 88:119–126
    [Google Scholar]
  26. Papagianni M., Mattey M., Kristiansen B. 1999; The influence of glucose concentration on citric acid production and morphology of Aspergillus niger in batch and fed-batch culture. Enzyme Microb Technol 25:710–717 [CrossRef]
    [Google Scholar]
  27. Pirt S. J. 1965; The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci 163:224–231 [CrossRef]
    [Google Scholar]
  28. Pirt S. J. 1993; Product Formation in Cultures of Microbes . Pirtferm Papers, series A no: 4 London: Pirtferm;
    [Google Scholar]
  29. Rane K. D., Sims K. A. 1994; Oxygen uptake and citric acid production by Candida lipolytica Y 1095. Biotechnol Bioeng 43:131–137 [CrossRef]
    [Google Scholar]
  30. Righelato R. C., Trinci A. P. J., Pirt S. J., Peat A. 1968; The influence of maintenance energy and growth rate on the metabolic activity, morphology and conidiation of Penicillium chrysogenum . J Gen Microbiol 50:399–412 [CrossRef]
    [Google Scholar]
  31. Simpson D. R., Wiebe M. G., Robson G. D., Trinci A. P. J. 1995; Use of pH auxostats to grow filamentous fungi in continuous flow culture at maximum specific growth rate. FEMS Microbiol Lett 126:151–158 [CrossRef]
    [Google Scholar]
  32. Stucki J. W. 1980; The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur J Biochem 109:269–283 [CrossRef]
    [Google Scholar]
  33. Teixeira de Mattos M. J., Neijssel O. M. 1997; Bioenergetic consequences of microbial adaptation to low-nutrient environments. J Biotechnol 59:117–126 [CrossRef]
    [Google Scholar]
  34. Verduyn C., Postma E., Scheffers A., van Dijken J. P. 1992; Effect of benzoic acid on metabolic fluxes in yeasts: a continuous culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517 [CrossRef]
    [Google Scholar]
  35. Wallrath J., Schmidt M., Weiss H. 1992; Correlation between manganese-deficiency, loss of respiratory chain complex I activity and citric acid production in Aspergillus niger . Arch Microbiol 158:435–438
    [Google Scholar]
  36. Westerhoff H. V., Lolkema J. S., Otto R., Hellingwerf K. J. 1982; Thermodynamics of growth. Non-equilibrium thermodynamics of bacterial growth. The phenomenological and the mosaic approach. Biochim Biophys Acta 683:181–220 [CrossRef]
    [Google Scholar]
  37. Zhang A. 1999 Beiträge zur Kenntnis der Citronensäurefermentation. Studien zum Einfluss von Schwermetallionen und anderen Faktoren auf die Citronensäureproduktion PhD thesis, Technische Universität Wien:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-1143
Loading
/content/journal/micro/10.1099/00221287-148-4-1143
Loading

Data & Media loading...

Most cited Most Cited RSS feed