1887

Abstract

During analysis of the recently identified gene cluster for the glycopeptide antibiotic balhimycin, produced by DSM 5908, novel genes were identified and characterized in detail. The gene products of four of the identified genes (, , and ) are nonribosomal peptide synthetases (NRPSs); one (Orf1-protein) shows similarities to small proteins associated with several NRPSs without an assigned function. BpsA and BpsB are composed of three modules each (modules 1–6), BpsC of one module (module 7) and BpsD of a minimal module (module 8). Thus, the balhimycin gene cluster encodes eight modules, whereas its biosynthetic product is a heptapeptide. Non-producing mutants were created by a gene disruption of , an in-frame deletion of and a gene replacement of . After establishment of a gene complementation system for strains, the replacement mutant of was complemented, demonstrating for the first time that BpsD, encoding the eighth module, is indeed involved in balhimycin biosynthesis. After feeding with β-hydroxytyrosine the capability of the mutant to produce balhimycin was restored, demonstrating the participation of BpsD in the biosynthesis of this amino acid. The specificity of four of the eight adenylation domains was determined by ATP/PP exchange assays: modules 4 and 5 activated L-4-hydroxyphenylglycine, module 6 activated β-hydroxytyrosine and module 7 activated L-3,5-dihydroxyphenylglycine, which is in accordance with the sequence of the non-proteogenic amino acids 4 to 7 of the balhimycin backbone.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-1105
2002-04-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1481105a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-1105&mimeType=html&fmt=ahah

References

  1. Alijah R., Dorendorf J., Talay S., Pühler A., Wohlleben W. 1991; Genetic analysis of the phosphinothricin-tripeptide biosynthetic pathway of Streptomyces viridochromogenes Tü494. Appl Microbiol Biotechnol34:749–755
    [Google Scholar]
  2. Bibb M. J., White J., Ward J. M., Janssen G. R. 1994; The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome binding site. Mol Microbiol14:533–545[CrossRef]
    [Google Scholar]
  3. Bierman M., Logan R., O’Brien K., Seno E. T., Rao R. N., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene116:43–49[CrossRef]
    [Google Scholar]
  4. Billman-Jacobe H., McConville M. J., Haites R. E., Kovacevic S., Coppel R. L. 1999; Identification of a peptide synthetase involved in the biosynthesis of glycopeptidolipids of Mycobacterium smegmatis . Mol Microbiol33:1244–1253
    [Google Scholar]
  5. Bischoff D., Pelzer S., Höltzel A., Nicholson G., Stockert S., Wohlleben W., Jung G., Süßmuth R. 2001; The biosynthesis of vancomycin-type glycopeptide antibiotics – new insights into the cyclization steps. Angew Chem Int Ed. 401693–1696[CrossRef]
  6. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL1-Blue, a high efficiency plasmid transforming recA Escherichia coli strain with beta galactosidase selection. Focus5:376–378
    [Google Scholar]
  7. Challis G. L., Ravel J., Townsend C. A. 2000; Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol7:211–224[CrossRef]
    [Google Scholar]
  8. Chater K. F. 1986; Streptomyces phages and their applications to Streptomyces genetics. In The Bacteria: a Treatise on Structure and Function pp119–158 Edited by Queener S. W., Day L. E.. Orlando, FL: Academic Press;
    [Google Scholar]
  9. Chen H., Walsh C. T. 2001; Coumarin formation in novobiocin biosynthesis: β-hydroxylation of the aminoacyl enzyme tyrosyl- S -NovH by a cytochrome P 450 NovI. Chem Biol8:301–312[CrossRef]
    [Google Scholar]
  10. Fernández-Moreno M. A., Martinez E., Boto L., Hopwood D. A., Malpartida F. 1992; Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J Biol Chem267:19278–19290
    [Google Scholar]
  11. Gevers W., Kleinkauf H., Lipmann F. 1969; Peptidyl transfer in gramicidin S biosynthesis from enzyme-bound thioester intermediates. Proc Natl Acad Sci USA63:1335–1342[CrossRef]
    [Google Scholar]
  12. Gil J. A., Kieser H. M., Hopwood D. A. 1985; Cloning of a chloramphenicol acetyltransferase gene of Streptomyces acrimycini and its expression in Streptomyces and Escherichia coli . Gene38:1–8[CrossRef]
    [Google Scholar]
  13. Gilmore M. S., Hoch A. 1999; A vancomycin surprise. Nature399:524–527[CrossRef]
    [Google Scholar]
  14. Gish W., States D. J. 1993; Identification of protein coding regions by database similarity search. Nat Genet3:266–272[CrossRef]
    [Google Scholar]
  15. Hopwood D. A., Kieser T., Bibb M. J. 1983; Plasmids, recombination and chromosomal mapping in Streptomyces lividans 66 . J Gen Microbiol129:2257–2269
    [Google Scholar]
  16. Hopwood D. A., Bibb M. J., Chater K. F.. 7 other authors 1985; Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: The John Innes Foundation;
    [Google Scholar]
  17. Keller U., Kleinkauf H., Zocher B. 1984; 4-Methyl-3-hydroxyanthranilic acid activating enzyme from actinomycin-producing Streptomyces chrysomallus . Biochemistry23:1479–1484[CrossRef]
    [Google Scholar]
  18. Konz D., Marahiel M. A. 1999; How do peptide synthetases generate structural diversity?. Chem Biol6:R39–R48[CrossRef]
    [Google Scholar]
  19. Leclercq R., Derlot E., Duval J., Courvalin P. 1988; Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium . N Engl J Med319:157–161[CrossRef]
    [Google Scholar]
  20. Mootz H. D., Marahiel M. A. 1999; Design and application of multimodular peptide synthetases. Curr Opin Biotechnol10:341–348[CrossRef]
    [Google Scholar]
  21. Nadkarni S. R., Patel M. V., Chaterjee S., Vijayakumar E. K. S., Desikan K. R., Blumbach J., Ganguli B. N. 1994; Balhimycin, a new glycopeptide antibiotic produced by Amycolatopsis sp. Y-86,21022. J Antibiot47:334–341[CrossRef]
    [Google Scholar]
  22. O’Brien D. P., Kirkpatrick P. N., O’Brien S. W., Staroske T., Richardson T. I., Evans D. A., Hopkinson A., Spencer J. B., Williams D. H. 2000; Expression and assay of an N -methyltransferase involved in the biosynthesis of a vancomycin group antibiotic. Chem Commun 2000;103–104
    [Google Scholar]
  23. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci USA85:2444–2448[CrossRef]
    [Google Scholar]
  24. Pelzer S., Reichert W., Huppert M., Heckmann D., Wohlleben W. 1997; Cloning and analysis of a peptide synthetase gene of the balhimycin producer Amycolatopsis mediterranei DSM 5908 and development of a gene disruption/replacement system. J Biotechnol56:115–128[CrossRef]
    [Google Scholar]
  25. Pelzer S., Süßmuth R., Heckmann D., Recktenwald J., Huber P., Jung G., Wohlleben W. 1999; Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in the producing organism Amycolatopsis mediterranei DSM 5908. Antimicrob Agents Chemother43:1565–1573
    [Google Scholar]
  26. Pridmore R. D. 1987; New and versatile cloning vectors with kanamycin resistance marker. Gene56:309–312[CrossRef]
    [Google Scholar]
  27. Puk O., Huber P., Bischoff D., Recktenwald J., Jung G., Süßmuth R. D., van Pée K.-H., Wohlleben W., Pelzer S. 2002; Glycopeptide biosynthesis in Amycolatopsis mediterranei DSM 5908: function of a halogenase and a haloperoxidase/perhydrolase. Chem Biol9:225–235[CrossRef]
    [Google Scholar]
  28. Quadri L. E. N., Sello J., Keating T. A., Weinreb P. H., Walsh C. T. 1998; Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol5:631–645[CrossRef]
    [Google Scholar]
  29. Quirós L. M., Aguirrezabalaga I., Olano C., Méndez C., Salas J. A. 1998; Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus . Mol Microbiol28:1177–1185[CrossRef]
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Schauwecker F., Pfennig F., Schröder W., Keller U. 1998; Molecular cloning of the actinomycin synthetase gene cluster from Streptomyces chrysomallus and heterologous functional expression of the actinomycin synthetase II gene. J Bacteriol180:2468–2474
    [Google Scholar]
  32. Shen B., Du L., Sanchez C., Chen M., Edwards D. J. 1999; Bleomycin biosynthesis in Streptomyces verticillus ATCC 15003: a model of hybrid peptide and polyketide biosynthesis. Bioorg Chem27:155–171[CrossRef]
    [Google Scholar]
  33. Solenberg P. J., Matsushima P., Stack D. R., Wilkie S. C., Thompson R. C., Baltz R. H. 1997; Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis . Chem Biol4:195–202[CrossRef]
    [Google Scholar]
  34. Stachelhaus T., Mootz H. D., Marahiel M. A. 1999; The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol6:493–505[CrossRef]
    [Google Scholar]
  35. Staden R. 1996; The Staden sequence analysis package. Mol Biotechnol5:233–241[CrossRef]
    [Google Scholar]
  36. Steffensky M., Mühlenweg A., Wang Z.-X., Li S.-M., Heide L. 2000; Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother44:1214–1222[CrossRef]
    [Google Scholar]
  37. Strohl W. R. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res20:961–974[CrossRef]
    [Google Scholar]
  38. Stumpp T., Wilms B., Altenbuchner J. 2000; Ein neues, l-Rhamnose-induzierbares Expressionssystem für Escherichia coli . Biospektrum6:33–36
    [Google Scholar]
  39. Süßmuth R. D., Pelzer S., Nicholson G., Walk T., Wohlleben W., Jung G. 1999; New advances in the biosynthesis of glycopeptide antibiotics of the vancomycin type from Amycolatopsis mediterranei . Angew Chem Int Ed38:1976–1979[CrossRef]
    [Google Scholar]
  40. Trauger J. W., Walsh C. T. 2000; Heterologous expression in Escherichia coli of the first module of the nonribosomal peptide synthetase for chloroeremomycin, a vancomycin-type glycopeptide antibiotic. Proc Natl Acad Sci USA97:3112–3117[CrossRef]
    [Google Scholar]
  41. Van Wageningen A. M. A., Kirkpatrick P. N., Williams D. H., Harris B. R., Kershaw J. K., Lennard N. J., Jones M., Jones S. J. M., Solenberg P. J. 1998; Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chem Biol5:155–162[CrossRef]
    [Google Scholar]
  42. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene19:259–269[CrossRef]
    [Google Scholar]
  43. Voeykova T., Emelyanova L., Tabakov V., Mkrtumyan N. 1998; Transfer of plasmid pTO1 from Escherichia coli to various representatives of the order Actinomycetales by intergeneric conjugation. FEMS Microbiol Lett162:47–52[CrossRef]
    [Google Scholar]
  44. Williams D. H., Bardsley B. 1999; The vancomycin group of antibiotics and the fight against resistant bacteria. Angew Chem Int Ed38:1172–1193[CrossRef]
    [Google Scholar]
  45. Woodford N., Johnson A. P., Morrison D., Speller D. C. E. 1995; Current perspectives on glycopeptide resistance. Clin Microbiol Rev8:585–615
    [Google Scholar]
  46. Wright F., Bibb M. J. 1992; Codon usage in the G+C-rich Streptomyces genome. Gene113:55–65[CrossRef]
    [Google Scholar]
  47. Yao R. C., Crandall L. W. 1994; Glycopeptides: classification, occurrence, and discovery. In Glycopeptide Antibiotics pp1–28 Edited by Nagarajan R.. New York: Marcel Dekker;
    [Google Scholar]
  48. Yu S., Fiss E., Jacobs W. R. 1998; Analysis of the exochelin locus in Mycobacterium smegmatis : biosynthesis genes have homology with genes of the peptide synthetase family. J Bacteriol180:4676–4685
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-1105
Loading
/content/journal/micro/10.1099/00221287-148-4-1105
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error