1887

Abstract

Eight additional genes, , , , , , , and , in the cluster of ISP5230, were located immediately downstream of by chromosome walking. Sequence analyses and comparisons implicated them in biosynthesis of the 2,6-dideoxysugar in jadomycin B. The genes were cloned in , inactivated by inserting an apramycin resistance cassette with a promoter driving transcription of downstream genes, and transferred into by intergeneric conjugation. Analysis by HPLC and NMR of intermediates accumulated by cultures of the insertionally inactivated mutants indicated that , , , , , and mediate formation of the dideoxysugar moiety of jadomycin B and its attachment to the aglycone. Based on these results and sequence similarities to genes described in other species producing deoxysugar derivatives, a biosynthetic pathway is proposed in which the product (glucose-1-phosphate nucleotidyltransferase) activates glucose to its nucleotide diphosphate (NDP) derivative, and the product (a 4,6-dehydratase) converts this to NDP-4-keto-6-deoxy-D-glucose. An NDP-hexose 2,3-dehydratase and an oxidoreductase, encoded by and , respectively, catalyse ensuing reactions that produce an NDP-2,6-dideoxy-D--4-hexulose. The product of (NDP-4-keto-2,6-dideoxy-5-epimerase) converts this intermediate to its L- form and the product (NDP-4-keto-2,6-dideoxyhexose 4-ketoreductase) reduces the keto group of the NDP-4-hexulose to give an activated form of the L-digitoxose moiety in jadomycin B. Finally, a glycosyltransferase encoded by transfers the activated sugar to jadomycin aglycone. The function of is unclear; the gene is not essential for jadomycin B biosynthesis, but its presence ensures complete conversion of the aglycone to the glycoside. The deduced amino acid sequence of a 612 bp ORF (*) downstream of the dideoxysugar biosynthesis genes resembles many TetR-family transcriptional regulator sequences.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-1091
2002-04-01
2022-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1481091a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-1091&mimeType=html&fmt=ahah

References

  1. Abe F., Yamauchi T. 2000; Pregnane glycosides from the roots of Asclepias tuberosa . Chem Pharm Bull 48:1017–1022 [CrossRef]
    [Google Scholar]
  2. Abe F., Mori Y., Okabe H., Yamauchi T. 1994; Steroidal constituents from the roots and stems of Asclepias fruticosa . Chem Pharm Bull 42:1777–1783 [CrossRef]
    [Google Scholar]
  3. Aguirrezabalaga I., Olano C., Allende N., Rodriguez L., Brana A. F., Mendez C., Salas J. A. 2000; Identification and expression of genes involved in biosynthesis of oleandrose and its intermediate l-olivose in the oleandomycin producer Streptomyces antibioticus . Antimicrob Agents Chemother 44:1266–1275 [CrossRef]
    [Google Scholar]
  4. Ayer S. W., McInnes A. G., Thibault P., Walter J. A., Doull J. L., Parnell T., Vining L. C. 1991; Jadomycin, a novel 8 H -benz[ b ]oxazolo[3,2- f ]phenanthridine antibiotic from Streptomyces venezuelae ISP5230. Tetrahedron Lett 32:6301–6304 [CrossRef]
    [Google Scholar]
  5. Baltz R. H., Seno E. T. 1988; Genetics of Streptomyces fradiae and tylosin biosynthesis. Annu Rev Microbiol 42:547–574 [CrossRef]
    [Google Scholar]
  6. Bartel P. L., Connors N. C., Stroll W. R. 1990; Biosynthesis of anthracyclines: analysis of mutants of Streptomyces sp. strain C5 blocked in daunomycin biosynthesis. J Gen Microbiol 136:1877–1881 [CrossRef]
    [Google Scholar]
  7. Bechthold A., Sohng J. K., Smith T. M., Chu X., Floss H. G. 1995; Identification of Streptomyces violaceoruber Tü22 genes involved in the biosynthesis of granaticin. Mol Gen Genet 248:610–620 [CrossRef]
    [Google Scholar]
  8. Campbell J. A., Davies G. J., Bulone V., Henrissat B. 1997; A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326:929–939
    [Google Scholar]
  9. Chang Z., Sun Y., He J., Vining L. C. 2001; p -Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae: gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Microbiology 147:2113–2126
    [Google Scholar]
  10. Crowell K. G. 1993 Biosynthesis of jadomycin BSc Honours Thesis Acadia University; Canada:
    [Google Scholar]
  11. David E. C., Christopher T. W., Khosla C. 1998; Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282:63–68 [CrossRef]
    [Google Scholar]
  12. Decker H., Gaisser S., Pelzer S., Schneider P., Westrich L., Wohlleben W., Bechthold A. 1996; A general approach for cloning and characterization of dNDP-glucose dehydratase genes from actinomycetes. FEMS Microbiol Lett 141:195–201 [CrossRef]
    [Google Scholar]
  13. Doull J. L., Ayer S. W., Singh A. K., Thibault P. 1993; Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J Antibiot 46:849–871
    [Google Scholar]
  14. Draeger G., Park S.-H., Floss H. G. 1999; Mechanism of the 2-deoxygenation step in the biosynthesis of the deoxyhexose moieties of the antibiotics granaticin and oleandomycin. J Am Chem Soc 121:2611–2612 [CrossRef]
    [Google Scholar]
  15. Facey S. 1994 Cloning, sequencing and expression of a bromoperoxidase-catalase gene from Streptomyces venezuelae PhD thesis, Hohenheim University; Germany:
    [Google Scholar]
  16. Flett F., Mersinias V., Smith C. P. 1997; High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methylDNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229 [CrossRef]
    [Google Scholar]
  17. Gaisser S., Bohm G. A., Doumith M., Raynal M. C., Dhillon N., Corres J., Leadlay P. F. 1998; Analysis of eryBI , eryBIII and eryBVII from the erythromycin biosynthetic gene cluster in Saccharopolyspora erythraea . Mol Gen Genet 258:78–88 [CrossRef]
    [Google Scholar]
  18. Gaisser S., Reather J., Wirtz G., Kellenberger L., Staunton J., Leadlay P. F. 2000; A defined system for hybrid macrolide biosynthesis in Saccharopolyspora erythraea . Mol Microbiol 36:391–401 [CrossRef]
    [Google Scholar]
  19. Grimm A., Madduri K., Ali A., Hutchinson C. R. 1994; Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene 151:1–8 [CrossRef]
    [Google Scholar]
  20. Han L., Yang K., Ramalingam E., Mosher R. H., Vining L. C. 1994; Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology 140:3379–3389 [CrossRef]
    [Google Scholar]
  21. He J., Magarvey N., Piraee M., Vining L. C. 2001; The gene cluster for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 includes novel shikimate pathway homologues and a monomodular nonribosomal peptide synthetase gene. Microbiology 147:2817–2829
    [Google Scholar]
  22. Hoffmeister D., Ichinose K., Domann S. 9 other authors 2000; The NDP-sugar co-substrate concentration and the enzyme expression level influence the substrate specificity of glycosyltransferases: cloning and characterization of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster. Chem Biol 7:821–831 [CrossRef]
    [Google Scholar]
  23. Hopwood D. A., Sherman D. H. 1990; Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet 24:37–66 [CrossRef]
    [Google Scholar]
  24. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  25. Huan V. D., Ohtani K., Kasai R., Yamasaki K., Tuu N. V. 2001; Sweet pregnane glycosides from Telosma procumbens . Chem Pharm Bull 49:453–460 [CrossRef]
    [Google Scholar]
  26. Hutchinson C. R. 1999; Microbial polyketide synthases: more and more prolific. Proc Natl Acad Sci U S A 96:3336–3338 [CrossRef]
    [Google Scholar]
  27. Ingram C., Brawner M., Youngman P., Westpheling J. 1989; xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J Bacteriol 171:6617–6624
    [Google Scholar]
  28. Ishikawa J., Hotta K. 1999; FramePlot: a new implementation of the Frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content. FEMS Microbiol Lett 174:252–253
    [Google Scholar]
  29. Katsube T., Kazuta Y., Tanizawa K., Fukui T. 1991; Expression in Escherichia coli of UDP-glucose pyrophosphorylase cDNA from potato tuber and functional assessment of the five lysyl residues located at the substrate-binding site. Biochemistry 30:8546–8551 [CrossRef]
    [Google Scholar]
  30. Kaster K. R., Burgett S. G., Nagarajah R. R., Ingolia T. D. 1983; Analysis of a bacterial hygromycin B resistance gene by transcriptional and translational fusions and by DNA sequencing. Nucleic Acids Res 11:6895–6911 [CrossRef]
    [Google Scholar]
  31. Katz L., Donadio S. 1993; Polyketide synthesis: prospects for hybrid antibiotics. Annu Rev Microbiol 47:875–912 [CrossRef]
    [Google Scholar]
  32. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  33. Kirschning A., Bechthold A., Rohr J. 1997; Chemical and biochemical aspects of deoxysugars and deoxyoligosaccharides. Topics Curr Chem 188:1–84
    [Google Scholar]
  34. Krohn K., Rohr J. 1997; Angucyclines: total syntheses, new structures, and biosynthetic studies of an emerging new class of antibiotics. Topics Curr Chem 188:127–195
    [Google Scholar]
  35. Krugel H., Schumann G., Hanel F., Fiedler G. 1993; Nucleotide sequence analysis of five putative Streptomyces griseus genes, one of which complements an early function in daunorubicin biosynthesis that is linked to a putative gene cluster involved in TDP-daunosamine formation. Mol Gen Genet 241:193–202
    [Google Scholar]
  36. Kulowski K., Wendt-Pienkowski E., Han L., Yang K., Vining L. C., Hutchinson C. R. 1999; Functional characterization of the jadI gene as a cyclase forming angucyclinones. J Am Chem Soc 121:1786–1794 [CrossRef]
    [Google Scholar]
  37. Kunzel E., Faust B., Oelkers C., Weissbach U., Bearden D. W., Weitnauer G., Westrich L., Bechthold A., Rohr J. 1999; Inactivation of the urdGT2 gene, which encodes a glycosyltransferase responsible for the C-glycosyltransfer of activated d-olivose, leads to formation of the novel urdamycins I, J, and K. J Am Chem Soc 121:11058–11062 [CrossRef]
    [Google Scholar]
  38. Larson J. L., Hershberger C. L. 1986; The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid 15:199–209 [CrossRef]
    [Google Scholar]
  39. Liu H.-w., Thorson J. S. 1994; Pathways and mechanisms in the biosynthesis of novel deoxysugars by bacteria. Annu Rev Microbiol 48:223–256 [CrossRef]
    [Google Scholar]
  40. MacNeil D. J., Gewain K. M., Rudy C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68 [CrossRef]
    [Google Scholar]
  41. Madduri K., Kennedy J., Rivola G. 8 other authors 1998; Production of the antitumour drug epirubicin (4′-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius . Nat Biotechnol 16:69–74 [CrossRef]
    [Google Scholar]
  42. Mallams A. K., Puar M. S., Rossman R. R. 1981; Kijanimicin. 1. Structure of the individual sugar components. J Am Chem Soc 103:3938–3940 [CrossRef]
    [Google Scholar]
  43. Mazodier P., Peter R., Thompson C. 1989; Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171:3583–3585
    [Google Scholar]
  44. McDaniel R., Thamchaipenet A., Gustafsson C., Fu H., Betlach M., Ashley G. 1999; Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel ‘unnatural’ natural products. Proc Natl Acad Sci USA 96:1846–1851 [CrossRef]
    [Google Scholar]
  45. Murakami R., Tomikawa T., Shin-Ya K., Shinozaki J., Kajiura T., Seto H., Hayakawa Y. 2001; Ammocidin, a new apoptosis inducer in Ras-dependent cells from Saccharothrix sp. II. Physico-chemical properties and structure elucidation. J Antibiot 54:714–717 [CrossRef]
    [Google Scholar]
  46. Olano C., Lomovskaya N., Fonstein L., Roll J. T., Hutchinson C. R. 1999; A two-plasmid system for the glycosylation of polyketide antibiotics: bioconversion of epsilon-rhodomycinone to rhodomycin D. Chem Biol 6:845–855 [CrossRef]
    [Google Scholar]
  47. Quiros L. M., Aguirrezabalaga I., Olano C., Mendez C., Salas J. A. 1998; Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus . Mol Microbiol 28:1177–1185 [CrossRef]
    [Google Scholar]
  48. Rao R. N., Allen N. E., Hobbs J. N. Jr, Alborn W. E. Jr, Kirst H. A., Paschal J. W. 1983; Genetic and enzymatic basis for hygromycin B resistance in E. coli . Antimicrob Agents Chemother 24:689–695 [CrossRef]
    [Google Scholar]
  49. Reichstein T., Weiss E. 1962; The sugars of the cardiac glycosides. Adv Carbohydr Chem 17:65–120
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Shen Y., Yoon P., Yu T.-w., Floss H. G., Hopwood D. A., Moore B. S. 1999; Ectopic expression of the minimal whiE polyketide synthase generates a library of aromatic polyketides of diverse sizes and shapes. Proc Natl Acad Sci U S A 96:3622–3627 [CrossRef]
    [Google Scholar]
  52. Steffensky M., Muhlenweg A., Wang Z., Li A., Heide L. 2000; Identification of the novobiocin biosynthesis gene cluster of Streptomyces sphaeroides NCIB 11891. Antimicrob Agents Chemother 44:1214–1222 [CrossRef]
    [Google Scholar]
  53. Stuttard C. 1982; Temperate phages of Streptomyces venezuelae : lysogeny and host specificity shown by SV1 and SV2. J Gen Microbiol 128:115–121
    [Google Scholar]
  54. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  55. Thorson J. S., Lo S. F., Liu H.-w. 1993; Biosynthesis of 3,6-dideoxyhexoses: new mechanistic reflections upon 2,6-dideoxy, 4,6-dideoxy, and amino sugar construction. J Am Chem Soc 115:6993–6994 [CrossRef]
    [Google Scholar]
  56. Thorson J. S., Lo S. F., Ploux O., He X., Liu H.-w. 1994; Studies of the biosynthesis of 3,6-dideoxyhexose: molecular cloning and characterization of the asc (ascarylose) region from Yersinia pseudotuberculosis serogroup VA. J Bacteriol 176:5483–5493
    [Google Scholar]
  57. Tomita F., Tamaoki T., Shirahata K., Kasai M., Morimoto M., Ohkubo S., Mineura K., Ishii S. 1980; Novel antitumor antibiotics, tetrocarcins. J Antibiot 33:668–670 [CrossRef]
    [Google Scholar]
  58. Trefzer A., Salas J. A., Bechthold A. 1999; Genes and enzymes involved in deoxysugar biosynthesis in bacteria. Nat Prod Rep 16:283–299 [CrossRef]
    [Google Scholar]
  59. Walker S., Valentine K. G., Kahne D. 1990; Sugar as DNA binders: a comment on the calicheamicin oligosaccharide. J Am Chem Soc 112:6428–6429 [CrossRef]
    [Google Scholar]
  60. Wang Z., Li S., Heide L. 2000; Identification of the coumermycin A1 biosynthesis gene cluster of Streptomyces rishiriensis DSM 40489. Antimicrob Agents Chemother 44:3040–3048 [CrossRef]
    [Google Scholar]
  61. Wang L., McVey J., Vining L. C. 2001; Cloning and functional analysis of a phosphopantetheinyl transferase superfamily gene associated with jadomycin biosynthesis in Streptomyces venezuelae ISP5230. Microbiology 147:1535–1545
    [Google Scholar]
  62. Warashina T., Noro T. 2000a; Steroidal glycosides from the aerial part of Asclepias incarnata L. II. . Chem Pharm Bull 48:99–107 [CrossRef]
    [Google Scholar]
  63. Warashina T., Noro T. 2000b; Cardenolide and oxypregnane glycosides from the root of Asclepias incarnata L. Chem Pharm Bull 48:516–524 [CrossRef]
    [Google Scholar]
  64. Westrich L., Domann S., Faust B., Bedford D., Hopwood D. A., Bechthold A. 1999; Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol Lett 170:381–387 [CrossRef]
    [Google Scholar]
  65. Yang K., Han L., Ayer S. W., Vining L. C. 1996; Accumulation of the angucycline antibiotic rabelomycin after disruption of an oxygenase gene in the jadomycin B biosynthetic gene cluster of Streptomyces venezuelae . Microbiology 142:123–132 [CrossRef]
    [Google Scholar]
  66. Zhao L., Sherman D. H., Liu H.-w. 1998; Biosynthesis of desosamine: construction of a new methymycin/neomethymycin analogue by deletion of a desosamine biosynthetic gene. J Am Chem Soc 120:10256–10257 [CrossRef]
    [Google Scholar]
  67. Zielinski J., Jereczek E., Sowinski P., Falkowski L., Rudowski A., Borowski E. 1979; The structure of a novel sugar component of polyene macrolide antibiotics: 2,6-dideoxy-l-ribohexopyranose. J Antibiot 32:565–568 [CrossRef]
    [Google Scholar]
  68. Zukowski M. M., Gaffney D. F., Speck D., Kauffmann M., Findeli A., Wisecup A., Lecocq J. 1983; Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci USA 80:1101–1105 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-1091
Loading
/content/journal/micro/10.1099/00221287-148-4-1091
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error