1887

Abstract

Eight additional genes, , , , , , , and , in the cluster of ISP5230, were located immediately downstream of by chromosome walking. Sequence analyses and comparisons implicated them in biosynthesis of the 2,6-dideoxysugar in jadomycin B. The genes were cloned in , inactivated by inserting an apramycin resistance cassette with a promoter driving transcription of downstream genes, and transferred into by intergeneric conjugation. Analysis by HPLC and NMR of intermediates accumulated by cultures of the insertionally inactivated mutants indicated that , , , , , and mediate formation of the dideoxysugar moiety of jadomycin B and its attachment to the aglycone. Based on these results and sequence similarities to genes described in other species producing deoxysugar derivatives, a biosynthetic pathway is proposed in which the product (glucose-1-phosphate nucleotidyltransferase) activates glucose to its nucleotide diphosphate (NDP) derivative, and the product (a 4,6-dehydratase) converts this to NDP-4-keto-6-deoxy-D-glucose. An NDP-hexose 2,3-dehydratase and an oxidoreductase, encoded by and , respectively, catalyse ensuing reactions that produce an NDP-2,6-dideoxy-D--4-hexulose. The product of (NDP-4-keto-2,6-dideoxy-5-epimerase) converts this intermediate to its L- form and the product (NDP-4-keto-2,6-dideoxyhexose 4-ketoreductase) reduces the keto group of the NDP-4-hexulose to give an activated form of the L-digitoxose moiety in jadomycin B. Finally, a glycosyltransferase encoded by transfers the activated sugar to jadomycin aglycone. The function of is unclear; the gene is not essential for jadomycin B biosynthesis, but its presence ensures complete conversion of the aglycone to the glycoside. The deduced amino acid sequence of a 612 bp ORF (*) downstream of the dideoxysugar biosynthesis genes resembles many TetR-family transcriptional regulator sequences.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-1091
2002-04-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1481091a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-1091&mimeType=html&fmt=ahah

References

  1. Abe F., Yamauchi T. 2000; Pregnane glycosides from the roots of Asclepias tuberosa . Chem Pharm Bull48:1017–1022[CrossRef]
    [Google Scholar]
  2. Abe F., Mori Y., Okabe H., Yamauchi T. 1994; Steroidal constituents from the roots and stems of Asclepias fruticosa . Chem Pharm Bull42:1777–1783[CrossRef]
    [Google Scholar]
  3. Aguirrezabalaga I., Olano C., Allende N., Rodriguez L., Brana A. F., Mendez C., Salas J. A. 2000; Identification and expression of genes involved in biosynthesis of oleandrose and its intermediate l-olivose in the oleandomycin producer Streptomyces antibioticus. Antimicrob Agents Chemother44:1266–1275[CrossRef]
    [Google Scholar]
  4. Ayer S. W., McInnes A. G., Thibault P., Walter J. A., Doull J. L., Parnell T., Vining L. C. 1991; Jadomycin, a novel 8 H -benz[ b ]oxazolo[3,2- f ]phenanthridine antibiotic from Streptomyces venezuelae ISP5230. Tetrahedron Lett32:6301–6304[CrossRef]
    [Google Scholar]
  5. Baltz R. H., Seno E. T. 1988; Genetics of Streptomyces fradiae and tylosin biosynthesis. Annu Rev Microbiol42:547–574[CrossRef]
    [Google Scholar]
  6. Bartel P. L., Connors N. C., Stroll W. R. 1990; Biosynthesis of anthracyclines: analysis of mutants of Streptomyces sp. strain C5 blocked in daunomycin biosynthesis. J Gen Microbiol136:1877–1881[CrossRef]
    [Google Scholar]
  7. Bechthold A., Sohng J. K., Smith T. M., Chu X., Floss H. G. 1995; Identification of Streptomyces violaceoruber Tü22 genes involved in the biosynthesis of granaticin. Mol Gen Genet248:610–620[CrossRef]
    [Google Scholar]
  8. Campbell J. A., Davies G. J., Bulone V., Henrissat B. 1997; A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J326:929–939
    [Google Scholar]
  9. Chang Z., Sun Y., He J., Vining L. C. 2001; p -Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae: gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Microbiology147:2113–2126
    [Google Scholar]
  10. Crowell K. G. 1993; Biosynthesis of jadomycin BSc Honours Thesis Acadia University; Canada:
    [Google Scholar]
  11. David E. C., Christopher T. W., Khosla C. 1998; Harnessing the biosynthetic code: combinations, permutations, and mutations. Science282:63–68[CrossRef]
    [Google Scholar]
  12. Decker H., Gaisser S., Pelzer S., Schneider P., Westrich L., Wohlleben W., Bechthold A. 1996; A general approach for cloning and characterization of dNDP-glucose dehydratase genes from actinomycetes. FEMS Microbiol Lett141:195–201[CrossRef]
    [Google Scholar]
  13. Doull J. L., Ayer S. W., Singh A. K., Thibault P. 1993; Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J Antibiot46:849–871
    [Google Scholar]
  14. Draeger G., Park S.-H., Floss H. G. 1999; Mechanism of the 2-deoxygenation step in the biosynthesis of the deoxyhexose moieties of the antibiotics granaticin and oleandomycin. J Am Chem Soc121:2611–2612[CrossRef]
    [Google Scholar]
  15. Facey S. 1994; Cloning, sequencing and expression of a bromoperoxidase-catalase gene from Streptomyces venezuelae PhD thesis, Hohenheim University; Germany:
    [Google Scholar]
  16. Flett F., Mersinias V., Smith C. P. 1997; High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methylDNA-restricting streptomycetes. FEMS Microbiol Lett155:223–229[CrossRef]
    [Google Scholar]
  17. Gaisser S., Bohm G. A., Doumith M., Raynal M. C., Dhillon N., Corres J., Leadlay P. F. 1998; Analysis of eryBI , eryBIII and eryBVII from the erythromycin biosynthetic gene cluster in Saccharopolyspora erythraea . Mol Gen Genet258:78–88[CrossRef]
    [Google Scholar]
  18. Gaisser S., Reather J., Wirtz G., Kellenberger L., Staunton J., Leadlay P. F. 2000; A defined system for hybrid macrolide biosynthesis in Saccharopolyspora erythraea. Mol Microbiol 36:391–401[CrossRef]
    [Google Scholar]
  19. Grimm A., Madduri K., Ali A., Hutchinson C. R. 1994; Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene151:1–8[CrossRef]
    [Google Scholar]
  20. Han L., Yang K., Ramalingam E., Mosher R. H., Vining L. C. 1994; Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology140:3379–3389[CrossRef]
    [Google Scholar]
  21. He J., Magarvey N., Piraee M., Vining L. C. 2001; The gene cluster for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 includes novel shikimate pathway homologues and a monomodular nonribosomal peptide synthetase gene. Microbiology147:2817–2829
    [Google Scholar]
  22. Hoffmeister D., Ichinose K., Domann S.. 9 other authors 2000; The NDP-sugar co-substrate concentration and the enzyme expression level influence the substrate specificity of glycosyltransferases: cloning and characterization of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster. Chem Biol7:821–831[CrossRef]
    [Google Scholar]
  23. Hopwood D. A., Sherman D. H. 1990; Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet24:37–66[CrossRef]
    [Google Scholar]
  24. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985; Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  25. Huan V. D., Ohtani K., Kasai R., Yamasaki K., Tuu N. V. 2001; Sweet pregnane glycosides from Telosma procumbens . Chem Pharm Bull49:453–460[CrossRef]
    [Google Scholar]
  26. Hutchinson C. R. 1999; Microbial polyketide synthases: more and more prolific. Proc Natl Acad Sci U S A96:3336–3338[CrossRef]
    [Google Scholar]
  27. Ingram C., Brawner M., Youngman P., Westpheling J. 1989; xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J Bacteriol171:6617–6624
    [Google Scholar]
  28. Ishikawa J., Hotta K. 1999; FramePlot: a new implementation of the Frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content. FEMS Microbiol Lett174:252–253
    [Google Scholar]
  29. Katsube T., Kazuta Y., Tanizawa K., Fukui T. 1991; Expression in Escherichia coli of UDP-glucose pyrophosphorylase cDNA from potato tuber and functional assessment of the five lysyl residues located at the substrate-binding site. Biochemistry30:8546–8551[CrossRef]
    [Google Scholar]
  30. Kaster K. R., Burgett S. G., Nagarajah R. R., Ingolia T. D. 1983; Analysis of a bacterial hygromycin B resistance gene by transcriptional and translational fusions and by DNA sequencing. Nucleic Acids Res11:6895–6911[CrossRef]
    [Google Scholar]
  31. Katz L., Donadio S. 1993; Polyketide synthesis: prospects for hybrid antibiotics. Annu Rev Microbiol47:875–912[CrossRef]
    [Google Scholar]
  32. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000; Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  33. Kirschning A., Bechthold A., Rohr J. 1997; Chemical and biochemical aspects of deoxysugars and deoxyoligosaccharides. Topics Curr Chem188:1–84
    [Google Scholar]
  34. Krohn K., Rohr J. 1997; Angucyclines: total syntheses, new structures, and biosynthetic studies of an emerging new class of antibiotics. Topics Curr Chem188:127–195
    [Google Scholar]
  35. Krugel H., Schumann G., Hanel F., Fiedler G. 1993; Nucleotide sequence analysis of five putative Streptomyces griseus genes, one of which complements an early function in daunorubicin biosynthesis that is linked to a putative gene cluster involved in TDP-daunosamine formation. Mol Gen Genet241:193–202
    [Google Scholar]
  36. Kulowski K., Wendt-Pienkowski E., Han L., Yang K., Vining L. C., Hutchinson C. R. 1999; Functional characterization of the jadI gene as a cyclase forming angucyclinones. J Am Chem Soc121:1786–1794[CrossRef]
    [Google Scholar]
  37. Kunzel E., Faust B., Oelkers C., Weissbach U., Bearden D. W., Weitnauer G., Westrich L., Bechthold A., Rohr J. 1999; Inactivation of the urdGT2 gene, which encodes a glycosyltransferase responsible for the C-glycosyltransfer of activated d-olivose, leads to formation of the novel urdamycins I, J, and K. J Am Chem Soc121:11058–11062[CrossRef]
    [Google Scholar]
  38. Larson J. L., Hershberger C. L. 1986; The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid15:199–209[CrossRef]
    [Google Scholar]
  39. Liu H.-w., Thorson J. S. 1994; Pathways and mechanisms in the biosynthesis of novel deoxysugars by bacteria. Annu Rev Microbiol48:223–256[CrossRef]
    [Google Scholar]
  40. MacNeil D. J., Gewain K. M., Rudy C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene111:61–68[CrossRef]
    [Google Scholar]
  41. Madduri K., Kennedy J., Rivola G.. 8 other authors 1998; Production of the antitumour drug epirubicin (4′-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius . Nat Biotechnol16:69–74[CrossRef]
    [Google Scholar]
  42. Mallams A. K., Puar M. S., Rossman R. R. 1981; Kijanimicin. 1. Structure of the individual sugar components. J Am Chem Soc103:3938–3940[CrossRef]
    [Google Scholar]
  43. Mazodier P., Peter R., Thompson C. 1989; Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol171:3583–3585
    [Google Scholar]
  44. McDaniel R., Thamchaipenet A., Gustafsson C., Fu H., Betlach M., Ashley G. 1999; Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel ‘unnatural’ natural products. Proc Natl Acad Sci USA96:1846–1851[CrossRef]
    [Google Scholar]
  45. Murakami R., Tomikawa T., Shin-Ya K., Shinozaki J., Kajiura T., Seto H., Hayakawa Y. 2001; Ammocidin, a new apoptosis inducer in Ras-dependent cells from Saccharothrix sp. II. Physico-chemical properties and structure elucidation. J Antibiot54:714–717[CrossRef]
    [Google Scholar]
  46. Olano C., Lomovskaya N., Fonstein L., Roll J. T., Hutchinson C. R. 1999; A two-plasmid system for the glycosylation of polyketide antibiotics: bioconversion of epsilon-rhodomycinone to rhodomycin D. Chem Biol6:845–855[CrossRef]
    [Google Scholar]
  47. Quiros L. M., Aguirrezabalaga I., Olano C., Mendez C., Salas J. A. 1998; Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus . Mol Microbiol28:1177–1185[CrossRef]
    [Google Scholar]
  48. Rao R. N., Allen N. E., Hobbs J. N. Jr, Alborn W. E. Jr, Kirst H. A., Paschal J. W. 1983; Genetic and enzymatic basis for hygromycin B resistance in E. coli . Antimicrob Agents Chemother24:689–695[CrossRef]
    [Google Scholar]
  49. Reichstein T., Weiss E. 1962; The sugars of the cardiac glycosides. Adv Carbohydr Chem17:65–120
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Shen Y., Yoon P., Yu T.-w., Floss H. G., Hopwood D. A., Moore B. S. 1999; Ectopic expression of the minimal whiE polyketide synthase generates a library of aromatic polyketides of diverse sizes and shapes. Proc Natl Acad Sci U S A96:3622–3627[CrossRef]
    [Google Scholar]
  52. Steffensky M., Muhlenweg A., Wang Z., Li A., Heide L. 2000; Identification of the novobiocin biosynthesis gene cluster of Streptomyces sphaeroides NCIB 11891. Antimicrob Agents Chemother44:1214–1222[CrossRef]
    [Google Scholar]
  53. Stuttard C. 1982; Temperate phages of Streptomyces venezuelae : lysogeny and host specificity shown by SV1 and SV2. J Gen Microbiol128:115–121
    [Google Scholar]
  54. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680[CrossRef]
    [Google Scholar]
  55. Thorson J. S., Lo S. F., Liu H.-w. 1993; Biosynthesis of 3,6-dideoxyhexoses: new mechanistic reflections upon 2,6-dideoxy, 4,6-dideoxy, and amino sugar construction. J Am Chem Soc115:6993–6994[CrossRef]
    [Google Scholar]
  56. Thorson J. S., Lo S. F., Ploux O., He X., Liu H.-w. 1994; Studies of the biosynthesis of 3,6-dideoxyhexose: molecular cloning and characterization of the asc (ascarylose) region from Yersinia pseudotuberculosis serogroup VA. J Bacteriol176:5483–5493
    [Google Scholar]
  57. Tomita F., Tamaoki T., Shirahata K., Kasai M., Morimoto M., Ohkubo S., Mineura K., Ishii S. 1980; Novel antitumor antibiotics, tetrocarcins. J Antibiot33:668–670[CrossRef]
    [Google Scholar]
  58. Trefzer A., Salas J. A., Bechthold A. 1999; Genes and enzymes involved in deoxysugar biosynthesis in bacteria. Nat Prod Rep16:283–299[CrossRef]
    [Google Scholar]
  59. Walker S., Valentine K. G., Kahne D. 1990; Sugar as DNA binders: a comment on the calicheamicin oligosaccharide. J Am Chem Soc112:6428–6429[CrossRef]
    [Google Scholar]
  60. Wang Z., Li S., Heide L. 2000; Identification of the coumermycin A1 biosynthesis gene cluster of Streptomyces rishiriensis DSM 40489. Antimicrob Agents Chemother44:3040–3048[CrossRef]
    [Google Scholar]
  61. Wang L., McVey J., Vining L. C. 2001; Cloning and functional analysis of a phosphopantetheinyl transferase superfamily gene associated with jadomycin biosynthesis in Streptomyces venezuelae ISP5230. Microbiology147:1535–1545
    [Google Scholar]
  62. Warashina T., Noro T. 2000a; Steroidal glycosides from the aerial part of Asclepias incarnata L. II. . Chem Pharm Bull48:99–107[CrossRef]
    [Google Scholar]
  63. Warashina T., Noro T. 2000b; Cardenolide and oxypregnane glycosides from the root of Asclepias incarnata L. Chem Pharm Bull48:516–524[CrossRef]
    [Google Scholar]
  64. Westrich L., Domann S., Faust B., Bedford D., Hopwood D. A., Bechthold A. 1999; Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol Lett170:381–387[CrossRef]
    [Google Scholar]
  65. Yang K., Han L., Ayer S. W., Vining L. C. 1996; Accumulation of the angucycline antibiotic rabelomycin after disruption of an oxygenase gene in the jadomycin B biosynthetic gene cluster of Streptomyces venezuelae . Microbiology142:123–132[CrossRef]
    [Google Scholar]
  66. Zhao L., Sherman D. H., Liu H.-w. 1998; Biosynthesis of desosamine: construction of a new methymycin/neomethymycin analogue by deletion of a desosamine biosynthetic gene. J Am Chem Soc120:10256–10257[CrossRef]
    [Google Scholar]
  67. Zielinski J., Jereczek E., Sowinski P., Falkowski L., Rudowski A., Borowski E. 1979; The structure of a novel sugar component of polyene macrolide antibiotics: 2,6-dideoxy-l-ribohexopyranose. J Antibiot32:565–568[CrossRef]
    [Google Scholar]
  68. Zukowski M. M., Gaffney D. F., Speck D., Kauffmann M., Findeli A., Wisecup A., Lecocq J. 1983; Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci USA80:1101–1105[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-1091
Loading
/content/journal/micro/10.1099/00221287-148-4-1091
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error