1887

Abstract

The Sup35p protein of is an essential translation factor whose prion-like properties give rise to the non-Mendelian genetic element [ ]. In this study the gene from the related yeast species has been characterized. The gene encodes a protein (CaSup35p) of 729 aa which shows 65% amino acid identity to the Sup35p protein (ScSup35p), with the C-terminal region showing greater identity (79%) than the N-terminal region. The full-length CaSup35p can functionally replace ScSup35p in although complementation is only complete when CaSup35p is overexpressed. Complementation only requires expression of the CaSup35p C domain. In the full-length CaSup35p is unable to establish a prion-like aggregated state even in the presence of endogenous ScSup35p prion ‘seeds’, thus confirming the existence of a species barrier in fungal prion propagation. Subcellular localization studies in show that although CaSup35p is normally ribosome-associated, when not ribosome-associated, it does not form pelletable high-molecular-mass aggregates characteristic of the ScSup35p in [ ] strains. Unlike the ScSup35p, the CaSup35p N domain contains a number of polyglutamine repeats although it does contain seven copies of the peptide GGYQQ that is repeated in the ScSup35p N domain. Analysis of the gene from 14 different strains of identified four naturally occurring polymorphisms associated with changes in the length of the largest of the polyglutamine repeats. These findings have important implications for the evolution of fungal prion genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-1049
2002-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1481049a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-1049&mimeType=html&fmt=ahah

References

  1. Berg I., Cederberg H., Rannug U. 2000; Tetrad analysis shows that gene conversion is the major mechanism involved in mutation at the human minisatellite MS1 integrated in Saccharomyces cerevisiae . Genet Res 75:1–12 [CrossRef]
    [Google Scholar]
  2. Chernoff Y., Derkatch I. L., Inge-Vechtomov S. G. 1993; Multicopy SUP35 gene induces the de novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae . Curr Genet 24:268–270 [CrossRef]
    [Google Scholar]
  3. Chernoff Y. O., Lindquist S. L., Ono B.-I., Inge-Vechtomov S. G., Liebman S. W. 1995; Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268:880–884 [CrossRef]
    [Google Scholar]
  4. Chernoff Y. O., Galkin A. P., Lewitin E., Chernova T. A., Newnam G. P., Belenkiy S. M. 2000; Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol Microbiol 35:865–876 [CrossRef]
    [Google Scholar]
  5. Chien P., Weissman J. S. 2001; Conformational diversity in a yeast prion dictates its seeding specficity. Nature 410:223–227 [CrossRef]
    [Google Scholar]
  6. Cox B. S. 1965; Ψ, a cytoplasmic suppressor of super-suppression in yeast. Heredity 20:505–521 [CrossRef]
    [Google Scholar]
  7. Crouzet M., Tuite M. F. 1987; Genetic control of translation fidelity in yeast: molecular cloning and analysis of the allosuppressor gene sal3 . Mol Gen Genet 210:581–583 [CrossRef]
    [Google Scholar]
  8. Didichenko S. A., Ter-Avanesyan M. D., Smirnov V. N. 1991; Ribosome-bound EF-1α-like protein in the yeast Saccharomyces cerevisiae . Eur J Biochem 198:705–711 [CrossRef]
    [Google Scholar]
  9. Doel S. M., McCready S. J., Nierras C. R., Cox B. S. 1994; The dominant PNM2 mutation that eliminates the Ψ factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137:659–670
    [Google Scholar]
  10. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabeling restriction endonucleasese fragments to high specific activity. Anal Biochem 132:6–13 [CrossRef]
    [Google Scholar]
  11. Firoozan M., Grant C. M., Duarte J. A. B., Tuite M. F. 1991; Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay. Yeast 7:173–183 [CrossRef]
    [Google Scholar]
  12. Flechsig E., Shmerling D., Hegyi I., Raeber A. J., Fischer M., Cozzio A, von Mering C., Aguzzi A., Weissmann C. 2000; Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron 27:399–408 [CrossRef]
    [Google Scholar]
  13. Hanahan D. 1983; Studies on transformation of Escherichia coli with plamids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  14. Hawthorne D. C., Leupold U. 1974; Suppressor mutations in yeast. Curr Top Microbiol Immunol 64:1–47
    [Google Scholar]
  15. Ito H., Fukuda Y., Murata K., Kimura A. 1983; Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168
    [Google Scholar]
  16. Jakupciak J. P., Wells R. D. 2000; Genetic instabilities of triplet repeat sequences by recombination. IUBMB Life 50:355–359 [CrossRef]
    [Google Scholar]
  17. Kaiser C., Michaelis S., Mitchell A. 1994 Methods in Yeast Genetics. A Cold Spring Harbor Laboratory Course Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Kikuchi Y., Shimatake H., Kikuchi A. 1988; A yeast gene required for the G1-to-S transition encodes a protein containing an A-Kinase target site and GTPase domain. EMBO J 7:1175–1182
    [Google Scholar]
  19. Kushnirov V. V., Ter-Avanesyan M. D., Telckov M. V., Surguchov A. P., Smirnov V. N., Inge-Vechtomov S. G. 1988; Nucleotide sequence of the SUP2 ( SUP35 ) gene of Saccharomyces cerevisiae . Gene 66:45–54 [CrossRef]
    [Google Scholar]
  20. Kushnirov V. V., Kochneva-Pervukhova N. V., Chechenova M. B., Frolova N. S., Ter-Avanesyan M. D. 2000; Prion properties of the Sup35 protein of yeast Pichia methanolica . EMBO J 19:324–331 [CrossRef]
    [Google Scholar]
  21. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Moore H., Greenwell P. W., Liu C. P., Arnheim N., Petes T. D. 1999; Triplet repeats form secondary structures that escape DNA repair in yeast. Proc Natl Acad Sci USA 96:1504–1509 [CrossRef]
    [Google Scholar]
  23. Parham S. N., Resende C. G., Tuite M. F. 2001; Oligopeptide repeats in the yeast protein Sup35p stabilise intermolecular prion interactions. EMBO J 20:2111–2119 [CrossRef]
    [Google Scholar]
  24. Patino M. M., Liu J., Glover J. R., Lindquist S. 1996; Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622–626 [CrossRef]
    [Google Scholar]
  25. Paushkin S. V., Kushnirov V. V., Smirnov V. N., Ter-Avanesyan M. D. 1996; Propagation of the yeast prion-like [ PSI +] determinant is mediated by polymerization of the SUP35 -encoded polypeptide chain release factor. EMBO J 15:3127–3134
    [Google Scholar]
  26. Paushkin S. V., Kushnirov V. V., Smirnov V. N., Ter-Avanesyan M. D. 1997; In vitro propagation of the prion-like state of yeast SUP35 protein. Science 277:381–383 [CrossRef]
    [Google Scholar]
  27. Prusiner S. B. 1982; Novel proteinaceous infectious particles cause scrapie. Science 216:136–144 [CrossRef]
    [Google Scholar]
  28. Prusiner S. B., Scott M. R., DeArmond S. J., Cohen F. E. 1998; Prion protein biology. Cell 93:337–348 [CrossRef]
    [Google Scholar]
  29. Rose M. D., Novick P., Thomas J. H., Bolstein D., Fink G. R. 1987; A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243 [CrossRef]
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  32. Santos M. A., Tuite M. F. 1995; The CUG codon decoded in vivo as serine and not leucine in Candida albicans . Nucleic Acids Res 23:1481–1486 [CrossRef]
    [Google Scholar]
  33. Santoso A., Chien P., Osherovich L. Z., Weissman J. S. 2000; Molecular basis of a yeast prion species barrier. Cell 100:277–288 [CrossRef]
    [Google Scholar]
  34. Serio T. R., Cashikar A. G., Kowal A. S., Sawicki G. J., Moslehi J. J., Serpell L., Arnsdorf M. F., Lindquist S. L. 2000; Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289:1317–1321 [CrossRef]
    [Google Scholar]
  35. Sikorski R. S., Hieter P. 1989; A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae . Genetics 122:19–27
    [Google Scholar]
  36. Smith J. M. B. 1989 Opportunistic Mycoses of Man and Other Animals Wallingford, UK: CAB International;
    [Google Scholar]
  37. Spalding A., Tuite M. F. 1989; Host–plasmid interactions in Saccharomyces cerevisiae: effect of host ploidy on plasmid stability and copy number. J Gen Microbiol 135:1037–1045
    [Google Scholar]
  38. Sparrer H. E., Santoso A., Szoka F. C., Weissman J. S. 2000; Evidence for the prion hypothesis: induction of the yeast [ PSI +] factor by in vitro -converted Sup35 protein. Science 289:595–599 [CrossRef]
    [Google Scholar]
  39. Stansfield I., Grant C. M., Akhmaloka, Tuite M. F. 1992; Ribosomal association of the yeast SAL4 ( SUP45 ) gene product: implication for its role in translation fidelity and termination. Mol Microbiol 6:3469–3478 [CrossRef]
    [Google Scholar]
  40. Stansfield I., Akhmaloka, Tuite M. F. 1995a; A mutant allele of the SUP45 ( SAL4 ) gene of Saccharomyces cerevisiae shows temperature-dependent allosuppressor and omnipotent suppressor phenotypes. Curr Genet 27:417–426 [CrossRef]
    [Google Scholar]
  41. Stansfield I., Jones K. M., Kushnirov V. V., Dagkesamanskaya A. R., Paulshkin S. V., Nierras C. R., Cox B. S., Ter-Avanesyan M. D., Tuite M. F. 1995b; The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae . EMBO J 14:4365–4373
    [Google Scholar]
  42. Swoboda R. K., Bertram G., Colthurst D. R., Tuite M. F., Gow N. A. R., Gooday G. W., Brown A. J. P. 1994; Regulation of the gene encoding translation elongation factor 3 during growth and morphogenesis in Candida albicans . Microbiology 140:2611–2616 [CrossRef]
    [Google Scholar]
  43. Ter-Avanesyan M. D., Kushnirov V. V., Dagkesamanskaya A. R., Didichenko S. A., Chernoff Y. O., Inge-Vechtomov S. G. 1993; Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 7:683–692 [CrossRef]
    [Google Scholar]
  44. Ter-Avanesyan M. D., Dagkesamanskaya A. R., Kushnirov V. V., Smirnov V. N. 1994; The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [ PSI +] in the yeast Saccharomyces cerevisiae . Genetics 137:671–676
    [Google Scholar]
  45. Tuite M. F. 2000; Yeast prions and their prion-forming domain. Cell 100:289–292 [CrossRef]
    [Google Scholar]
  46. Tuite M. F., Mundy C. R., Cox B. S. 1981; Agents that cause a high frequency of genetic change from [ PSI +] to [ psi ] in Saccharomyces cerevisiae . Genetics 98:691–711
    [Google Scholar]
  47. Tzung K.-W., Williams R. M., Scherer S. 10 other authors 2001; Genomic evidence for a complete sexual cycle in Candida albicans. Proc Natl Acad Sci USA 98:3249–3253 [CrossRef]
    [Google Scholar]
  48. Wach A., Brachat A., Poehlmann R., Philippesen P. 1994; New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae . Yeast 10:1793–1808 [CrossRef]
    [Google Scholar]
  49. Wickner R. B. 1994; [ URE3 ] as an altered Ure2 protein: evidence for a prion analog in Saccharomyces cerevisiae . Science 264:566–569 [CrossRef]
    [Google Scholar]
  50. Wickner R. B., Chernoff Y. O. 1999 Prions of fungi: [URE3], [PSI], and [Het-s] discovered as heritable traits In Prion Biology and Diseases pp 229–272 Edited by Prusiner S. B. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Wilson P. G., Culbertson M. R. 1988; SUF12 suppressor protein of yeast. A fusion protein related to the EF-1 family of elongation factors. J Mol Biol 199:559–573 [CrossRef]
    [Google Scholar]
  52. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–199 [CrossRef]
    [Google Scholar]
  53. Zhouravleva G., Frovola L., LeGoff X., LeGuellec R., Inge-Vechtomov S. G., Kisselev L., Philippe M. 1995; Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 14:4065–4072
    [Google Scholar]
  54. Zoghbi H. Y., Orr H. T. 2000; Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-1049
Loading
/content/journal/micro/10.1099/00221287-148-4-1049
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error