1887

Abstract

The 102 aa Hfq protein of (Hfq) was first described as a host factor required for phage Qβ replication. More recently, Hfq was shown to affect the stability of several mRNAs, including mRNA, where it interferes with ribosome binding, which in turn results in rapid degradation of the transcript. In contrast, Hfq is also required for efficient translation of the and gene, encoding the stationary σ factor. In this study, the authors have isolated and characterized the Hfq homologue of (Hfq), which consists of only 82 aa. The 68 N-terminal amino acids of Hfq show 92% identity with Hfq. Hfq was shown to functionally replace Hfq in terms of its requirement for phage Qβ replication and for expression. In addition, Hfq exerted the same negative effect on . mRNA expression. As judged by proteome analysis, the expression of either the plasmid-borne or the gene in an Hfq RpoS strain revealed no gross difference in the protein profile. Both Hfq and Hfq affected the synthesis of approximately 26 RpoS-independent gene products. These studies showed that the functional domain of Hfq resides within its N-terminal domain. The observation that a C-terminally truncated Hfq lacking the last 27 aa [Hfq] can also functionally replace the full-length protein lends further support to this notion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-883
2002-03-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480883a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-883&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Azam T. A., Hiraga S., Ishihama A. 2000; Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid. Genes Cells 5:613–626 [CrossRef]
    [Google Scholar]
  3. Bodey G. P., Bolivar R., Fainstein V., Jadeja L. 1983; Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 5:279–313 [CrossRef]
    [Google Scholar]
  4. Brown L., Elliott T. 1996; Efficient translation of the RpoS sigma factor in Salmonella typhimurium requires host factor I, an RNA-binding protein encoded by the hfq gene. J Bacteriol 178:3763–3770
    [Google Scholar]
  5. Brown L., Elliott T. 1997; Mutations that increase expression of the rpoS gene and decrease its dependence on hfq function in Salmonella typhimurium . J Bacteriol 179:656–662
    [Google Scholar]
  6. Brückner R. 1992; A series of shuttle vectors for Bacillus subtilis and Escherichia coli . Gene 122:187–192 [CrossRef]
    [Google Scholar]
  7. Carmichael G. G., Weber K., Niveleau A., Wahba A. J. 1975; The host factor required for RNA phage Qβ RNA replication in vitro . J Biol Chem 250:3607–3612
    [Google Scholar]
  8. Chuang D. Y., Kyeremeh A. G., Gunji Y., Takahara Y., Ehara Y., Kikumoto T. 1999; Identification and cloning of an Erwinia carotovora subsp. carotovora bacteriocin regulator gene by insertional mutagenesis. J Bacteriol 181:1953–1957
    [Google Scholar]
  9. Cunning C., Brown L., Elliott T. 1998; Promotor substitution and deletion analysis of upstream region required for rpoS translational regulation. J Bacteriol 180:4564–4570
    [Google Scholar]
  10. Deckert G., Warren P. V., Gaasterland T. 12 other authors 1998; The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358 [CrossRef]
    [Google Scholar]
  11. de Fernandez M. T. F., Eoyang L., August J. T. 1968; Factor fraction required for the synthesis of bacteriophage Qβ-RNA. Nature 219:588–590 [CrossRef]
    [Google Scholar]
  12. de Fernandez M. T. F., Hayward W. S., August J. T. 1972; Bacterial proteins required for replication of Qβ ribonucleic acid. J Biol Chem 247:824–831
    [Google Scholar]
  13. Durand J. M., Bjork G. R., Kuwae A., Yoshikawa M., Sasakawa C. 1997; The modified nucleoside 2-methylthio- N 6-isopentenyladenosine in tRNA of Shigella flexneri is required for expression of virulence genes. J Bacteriol 179:5777–5782
    [Google Scholar]
  14. Fleischmann R. D., Adams M. D., White O. 37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [CrossRef]
    [Google Scholar]
  15. Holloway B. W. 1955; Genetic recombination in Pseudomonas aeruginosa . J Gen Microbiol 13:572–581 [CrossRef]
    [Google Scholar]
  16. Kajitani M., Ishihama A. 1991; Identification and sequence determination of the host factor gene for bacteriophage Qβ. Nucleic Acids Res 19:1063–1066 [CrossRef]
    [Google Scholar]
  17. Kajitani M., Kato A., Wada A., Inokuchi Y., Ishihama A. 1994; Regulation of the Escherichia coli hfq gene encoding the host factor for phage Qβ. J Bacteriol 176:531–534
    [Google Scholar]
  18. Kaminski P. A., Desnoues N., Elmerich C. 1994; The expression of nifA in Azorhizobium caulinodans requires a gene product homologous to Escherichia coli HF-I, an RNA-binding protein involved in the replication of phage Qβ RNA. Proc Natl Acad Sci USA 91:4663–4667 [CrossRef]
    [Google Scholar]
  19. Laemmli U. K. 1970; Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  20. Lange R., Hengge-Aronis R. 1991; Identification of a central regulator of stationary-phase gene expression in Escherichia coli . Mol Microbiol 5:49–59 [CrossRef]
    [Google Scholar]
  21. Lanzer M., Bujard H. 1988; Promoters largely determine the efficiency of repressor action. Proc Natl Acad Sci USA 85:8973–8977 [CrossRef]
    [Google Scholar]
  22. Majdalani N., Cunning C., Sledjeski D. D., Elliott T., Gottesman S. 1998; DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci USA 95:12462–12467 [CrossRef]
    [Google Scholar]
  23. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Muffler A., Fischer D., Hengge-Aronis R. 1996; The RNA-binding protein HF-I, known as a host factor for phage Qβ RNA replication, is essential for rpoS translation in Escherichia coli . Genes Dev 10:1143–1151 [CrossRef]
    [Google Scholar]
  25. Muffler A., Traulsen D. D., Fischer D., Lange R., Hengge-Aronis R. 1997; The RNA-binding protein HF-I plays a global regulatory role which is largely, but not exclusively, due to its role in expression of the σS subunit of RNA polymerase in Escherichia coli . J Bacteriol 179:297–300
    [Google Scholar]
  26. Nakao H., Watanabe H., Nakayama S., Takeda T. 1995; yst gene expression in Yersinia enterocolitica is positively regulated by a chromosomal region that is highly homologous to Escherichia coli host factor 1 gene ( hfq ). Mol Microbiol 18:859–865 [CrossRef]
    [Google Scholar]
  27. Ried G., Koebnik R., Hindennach I., Mutschler B., Henning U. 1994; Membrane topology and assembly of the outer membrane protein OmpA of Escherichia coli K12. Mol Gen Genet 243:127–135
    [Google Scholar]
  28. Robertson G. T., Roop R. M. 1999; The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol 34:690–700 [CrossRef]
    [Google Scholar]
  29. Rose R. E. 1988; The nucleotide sequence of pACYC184. Nucleic Acid Res 16:355 [CrossRef]
    [Google Scholar]
  30. Schuppli D., Miranda G., Tsui H. T., Winkler M. E., Sogo J. M., Weber H. 1997; Altered 3′-terminal RNA structure in phage Qβ adapted to host factor-less Escherichia coli . Proc Natl Acad Sci U S A 94:10239–10242 [CrossRef]
    [Google Scholar]
  31. Sledjeski D. D., Gupta A., Gottesman S. 1996; The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli . EMBO J 15:3993–4000
    [Google Scholar]
  32. Sledjeski D. D., Whitman C., Zhang A. 2001; Hfq is necessary for regulation by the untranslated RNA DsrA. J Bacteriol 183:1997–2005 [CrossRef]
    [Google Scholar]
  33. Stover C. K., Pham X. Q., Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  34. Suh S., Silo-Suh L., Woods D. E., Hassett D. J., West S. E. H., Ohman D. E. 1999; Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa . J Bacteriol 181:3890–3897
    [Google Scholar]
  35. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  36. Tsui H. T., Leung H. E., Winkler M. E. 1994; Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol Microbiol 13:35–49 [CrossRef]
    [Google Scholar]
  37. Tsui H. T., Feng G., Winkler M. E. 1997; Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12. J Bacteriol 179:7476–7487
    [Google Scholar]
  38. Vytvytska O., Jakobsen J. S., Balcunaite G., Andersen J. S., Baccarini M., von Gabain A. 1998; Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability. Proc Natl Acad Sci USA 95:14118–14123 [CrossRef]
    [Google Scholar]
  39. Vytvytska O., Moll I., Kaberdin V. R., von Gabain A., Bläsi U. 2000; Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev 14:1109–1118
    [Google Scholar]
  40. Wassarman K. M., Repoila F., Rosenow C., Storz G., Gottesman S. 2001; Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15:1637–1651 [CrossRef]
    [Google Scholar]
  41. West S. E. H., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J. 1994; Construction of improved Escherichia Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa . Gene 128:81–86
    [Google Scholar]
  42. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 cloning vectors and host strains: nucleotide sequence of M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  43. Zhang A., Altuvia S., Tiwari A., Argaman L., Hengge-Aronis R., Storz G. 1998; The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J 17:6061–6068 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-883
Loading
/content/journal/micro/10.1099/00221287-148-3-883
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error