1887

Abstract

The replicon of the pTAV3 megaplasmid (approx. 400 kb) of has been localized to a 43 kb RI restriction fragment and its entire nucleotide sequence determined. The G+C content of the entire sequence is 66 mol%, which is within the range (62–66 mol%) previously determined for total DNA. ORF1 encodes a replication initiation protein Rep (472 kDa), which shares substantial similarity with putative proteins of the plasmids QpH1 and QpDV, and the replication protein of plasmid pPS10. ORF2, located in the opposite transcriptional orientation to ORF1, encodes a putative protein that shares similarity to a subfamily of ATPases involved in plasmid partitioning. The highest similarity was observed with homologous proteins (RepA) encoded by the family of replicons found in several plasmids of , and spp. The predicted product of ORF3 was similar to AcoR, Nif and NtrC transcriptional activators. A strong incompatibility determinant () was localized between ORF1 () and ORF2 (). The origin of replication of pTAV400 contains a short A+T-rich region and several imperfect palindromic sequences. Curing experiments demonstrated that the megaplasmid bears genes required for growth in minimal media and can therefore be referred to as a mini-chromosome. Megaplasmids pTAV3 of UW1 and pKLW2 of DSM 11073 were found to carry closely related, incompatible replicons. It has been shown that plasmid pORI6 (containing of pTAV3 cloned into plasmid pABW1, which does not replicate in spp.) can be activated not only by pTAV3, but also by pKLW2. Using pORI6, it was demonstrated that replication systems related to pTAV3 are also present in the replicons of JCM 7364, IAM 12816 and DM 12.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-871
2002-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480871a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-871&mimeType=html&fmt=ahah

References

  1. Armstrong K. A., Acosta R., Ledner E., Machida Y., Pancotto M., McCormick M., Ohtsubo H., Ohtsubo E. 1984; A 37×103 molecular weight plasmid-encoded protein is required for replication and copy number control in the plasmid pSC101 and its temperature-sensitive derivative pHS1. J Mol Biol 175:331–348 [CrossRef]
    [Google Scholar]
  2. Baj J., Piechucka E., Bartosik D., Wlodarczyk M. 2000; Plasmid occurrence and diversity in the genus Paracoccus . Acta Microbiol Pol 49:265–270
    [Google Scholar]
  3. Bartosik D., Bialkowska A., Baj J., Wlodarczyk M. 1997a; Construction of mobilizable cloning vectors derived from pBGS18 and their application for analysis of replicator region of a pTAV202 mini-derivative of Paracoccus versutus pTAV1 plasmid. Acta Microbiol Pol 46:379–383
    [Google Scholar]
  4. Bartosik D., Wlodarczyk M., Thomas C. M. 1997b; Complete nucleotide sequence of the replicator region of Paracoccus ( Thiobacillus ) versutus pTAV1 plasmid and its correlation to several plasmids of Agrobacterium and Rhizobium species. Plasmid 38:53–59 [CrossRef]
    [Google Scholar]
  5. Bartosik D., Baj J., Wlodarczyk M. 1998; Molecular and functional analysis of pTAV320- repABC type replicon of a composite pTAV1 plasmid of Paracoccus versutus . Microbiology 144:3149–3157 [CrossRef]
    [Google Scholar]
  6. Bartosik D., Szymanik M., Wysocka E. 2001; Identification of the partitioning centromere-like sequence within the repABC- type replicon of the composite Paracoccus versutus plasmid pTAV1. J Bacteriol 183:6234–6243 [CrossRef]
    [Google Scholar]
  7. Binns A. N., Joerger R. D., Ward J. E. Jr 1992; Agrobacterium and plant transformation. In Encyclopedia of Microbiology pp 37–51 Edited by Lederberg J. San Diego: Academic Press;
    [Google Scholar]
  8. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1519 [CrossRef]
    [Google Scholar]
  9. Boronin A. M. 1992; Diversity of Pseudomonas plasmids: to what extent?. FEMS Microbiol Lett 100:461–467 [CrossRef]
    [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 11:387–395
    [Google Scholar]
  11. Ditta G., Stanfield S., Corbin D., Helinski D. R. 1980; Broad host-range DNA cloning system for Gram-negative bacteria: construction of a bank of Rhizobium meliloti . Proc Natl Acad Sci USA 77:7347–7351 [CrossRef]
    [Google Scholar]
  12. Eckhardt T. 1978; A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1:584–588 [CrossRef]
    [Google Scholar]
  13. Freiberg C., Fellay R., Bairoch A., Broughton W. J., Rosenthal A., Perret X. 1997; Molecular basis of symbiosis between Rhizobium and legumes. Nature 378:394–401
    [Google Scholar]
  14. Friedrich B., Schwartz E. 1993; Molecular biology of hydrogen utilization in aerobic chemolithotrophs. Annu Rev Microbiol 47:351–383 [CrossRef]
    [Google Scholar]
  15. Gerdes K., Moller-Jensen J., Jensen R. B. 2000; Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 37:455–466
    [Google Scholar]
  16. Gilbride K. A., Brunton J. L. 1990; Identification and characterization of a new replication region in the Neisseria gonorrhoeae beta-lactamase plasmid pFA3. J Bacteriol 172:2439–2446
    [Google Scholar]
  17. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  18. Helinski D. R., Toukdarian A. E., Novick R. P. others 1996; Replication control and other stable maintenance mechanisms of plasmids. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp 2295–2324 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Huang M., Oppermann-Sanio F. B., Steinbuchel A. 1999; Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J Bacteriol 181:3837–3841
    [Google Scholar]
  20. Jumas-Bilak E., Michaux-Charachon S., Bourg G., Ramuz M., Allardet-Servent A. 1998; Unconventional genomic organization in the alpha subgroup of the Proteobacteria. J Bacteriol 180:2749–2755
    [Google Scholar]
  21. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197 [CrossRef]
    [Google Scholar]
  22. Koonin E. V. 1993; A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol 229:1165–1174 [CrossRef]
    [Google Scholar]
  23. Kortluke C., Hogfere C., Eberz G., Puhler A., Friedrich B. (1987; Genes of lithoautotrophic metabolism are clustered on megaplasmid pHG1 in Alcaligenes eutrophus . Mol Gen Genet 219:122–128
    [Google Scholar]
  24. Krawiec S., Riley M. 1990; Organization of the bacterial chromosome. Microbiol Rev 54:502–539
    [Google Scholar]
  25. Krüger N., Steinbüchel A. 1992; Identification of acoR , a regulatory gene for the expression of genes essential for acetoin catabolism in Alcaligenes eutrophus H16. J Bacteriol 174:4391–4400
    [Google Scholar]
  26. Kunnimalaiyaan M., Stevenson D. M., Zhou Y., Vary P. S. 2001; Analysis of the replicon region and identification of an rRNA operon on pBM400 of Bacillus megaterium QM B1551. Mol Microbiol 39:1010–1021 [CrossRef]
    [Google Scholar]
  27. Kushner S. R. 1978; An improved method for transformation of E. coli with ColE1-derived plasmids. In Genetic Engineering pp 17–23 Edited by Boyer H. B. Nicosia S. Amsterdam: Elsevier/North-Holland;
    [Google Scholar]
  28. Mergeay M., Nies D., Schlegel H. G., Gerits J., Charles P., Van Gijsegem F. 1985; Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334
    [Google Scholar]
  29. Moreno E. 1998; Genome evolution within the alpha Proteobacteria: why do some bacteria not possess plasmids and others exhibit more than one different chromosome?. FEMS Microbiol Rev 22:255–275 [CrossRef]
    [Google Scholar]
  30. Nieto C., Giraldo R., Fernandez-Tresguerres E., Diaz R. 1992; Genetic and functional analysis of the basic replicon of pPS10, a plasmid specific for Pseudomonas isolated from Pseudomonas syringae pathovar savastanoi. J Mol Biol 20:415–426
    [Google Scholar]
  31. Palmer K. M., Turner S. L., Young J. P. W. 2000; Sequence diversity of the plasmid replication gene repC in the Rhizobiaceae . Plasmid 44:209–219 [CrossRef]
    [Google Scholar]
  32. Ramı́rez-Romero M. A., Tellez-Sosa J., Barrios H., Perez-Oseguera A., Rosas V., Cevallos M. A. 2001; RepA negatively autoregulates the transcription of the repABC operon of the Rhizobium etli symbiotic plasmid basic replicon. Mol Microbiol 42:195–204
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Spratt B. G., Hedge P. J., Edelman A., Broome-Smith J. K., te Heesen S. 1986; Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene 41:337–342 [CrossRef]
    [Google Scholar]
  35. Stover C. K., Pham X. Q., Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  36. Taghavi S., Provoost A., Mergeay M., van der Lelie D. 1996; Identification of a partition and replication region in the Alcaligenes eutrophus megaplasmid pMOL28. Mol Gen Genet 250:169–179
    [Google Scholar]
  37. Taylor B. F., Hoare D. S. 1969; New facultative Thiobacillus and re-evaluation of the heterotrophic potential of Thiobacillus novellus . J Bacteriol 100:487–497
    [Google Scholar]
  38. Thiele D., Willems H., Haas M., Krauss H. 1994; Analysis of the entire nucleotide sequence of the cryptic plasmid QpH1 from Coxiella burnetii. Eur J Epidemiol 10:413–420 [CrossRef]
    [Google Scholar]
  39. Turner S. L., Rigottier-Gois L., Power R. S., Amarger N., Young J. P. W. 1996; Diversity of repC plasmid-replication sequences in Rhizobium leguminosarum . Microbiology 142:1705–1713 [CrossRef]
    [Google Scholar]
  40. Vieira J., Messing J. 1982; The pUC plasmids, and M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef]
    [Google Scholar]
  41. Wheatcroft R., McRae G. D., Miller R. W. 1990; Changes in the Rhizobium meliloti genome and the ability to detect supercoiled plasmids during bacteroid development. Mol Plant–Microbe Interact 3:9–17 [CrossRef]
    [Google Scholar]
  42. Williams R., Thomas C. M. 1992; Active partitioning of bacterial plasmids. J Gen Microbiol 138:1–16 [CrossRef]
    [Google Scholar]
  43. Williams R., Macartney D. P., Thomas C. M. 1998; The partitioning activity of the RK2 central control region requires only incC , korB and KorB-binding site OB3 but other KorB-binding sites form destabilizing complexes in the absence of OB3. Microbiology 144:3369–3378 [CrossRef]
    [Google Scholar]
  44. Winterstein C., Ludwig B. 1998; Genes coding for respiratory complexes map on all three chromosomes of the Paracoccus denitrificans genome. Arch Microbiol 169:275–281 [CrossRef]
    [Google Scholar]
  45. Wlodarczyk M., Piechucka E. 1995; Conjugal transfer of plasmid and chromosomal markers between strains of Thiobacillus versutus . Curr Microbiol 30:185–191 [CrossRef]
    [Google Scholar]
  46. Wlodarczyk M., Jagusztyn-Krynicka E. K., Bartosik D., Kalinowska I. 1994; Electroporation of Thiobacillus versutus with plasmid DNA. Acta Microbiol Pol 43:223–227
    [Google Scholar]
  47. Wood A. P., Kelly D. P. 1977; Heterotrophic growth of Thiobacillus A2 on sugars and organic acids. Arch Microbiol 113:257–264 [CrossRef]
    [Google Scholar]
  48. Young J. M., Kuykendall L. D., Martinez-Romero E., Kerr A., Sawada H. 2001; A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. , 1998 as new combinations: Rhizobium radiobacter , R. rhizogenes , R. rubii , R.undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103
    [Google Scholar]
  49. Zhu J., Oger P. M., Schrammeijer B., Hooykaas P. J., Farrand S. K., Winans S. C. 2000; The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3895 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-871
Loading
/content/journal/micro/10.1099/00221287-148-3-871
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error