Bioenergetics of the alkaliphilic sulfate-reducing bacterium Free

Abstract

Energy metabolism of the alkaliphilic sulfate-reducing bacterium strain Z-7935 was investigated in continuous culture and in physiological experiments on washed cells. When grown in chemostats with H as electron donor, the cells had extrapolated growth yields [ , g dry cell mass (mol electron acceptor)] of 55 with sulfate and 128 with thiosulfate. The maintenance energy coefficients were 19 and 13 mmol (g dry mass) h, and the minimum doubling times were 27 and 20 h with sulfate and thiosulfate, respectively. Cell suspensions reduced sulfate, thiosulfate, sulfite, elemental sulfur and molecular oxygen in the presence of H. In the absence of H, sulfite, thiosulfate and sulfur were dismutated to sulfide and sulfate. Sulfate and sulfite were only reduced in the presence of sodium ions, whereas sulfur was reduced also in the absence of Na. Plasmolysis experiments showed that sulfate entered the cells via an electroneutral symport with Na ions. The presence of an electrogenic Na–H antiporter was demonstrated in experiments applying monensin (an artificial electroneutral Na–H antiporter) and propylbenzylylcholine mustard.HCl (a specific inhibitor of Na–H antiporters). Sulfate reduction was sensitive to uncouplers (protonophores), whereas sulfite reduction was not affected. Changes in pH upon lysis of washed cells with butanol indicated that the intracellular pH was lower than the optimum pH for growth (pH 95). Pulses of NaCl (052 M) to cells incubated in the absence of Na did not result in ATP formation, whereas HCl pulses (shifting the pH from 92 to 70) did. Small oxygen pulses, which were reduced within a few seconds, caused a transient alkalinization. The results of preliminary experiments with chemiosmotic inhibitors provided further evidence that the alkalinization was caused by sodium–proton antiport following a primary electron-transport-driven sodium ion translocation. It is concluded that energy conservation in depends on a proton-translocating ATPase, whereas electron transport appears to be coupled to sodium ion translocation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-853
2002-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480853a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-853&mimeType=html&fmt=ahah

References

  1. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  2. Chernyak B. V., Dibrov P. A., Glogolev A. N., Sherman M. Y., Skulachev V. P. 1983; A novel type of energetics in a marine alkali-tolerant bacterium. ΔμNa-driven motility and sodium cycle. FEBS Lett 164:38–42 [CrossRef]
    [Google Scholar]
  3. Cypionka H. 1994; Sulfate transport. Methods Enzymol 243:3–14
    [Google Scholar]
  4. Cypionka H. 1995; Solute transport and cell energetics. In Sulfate-reducing Bacteria pp 151–184 Edited by Barton L. L. New York & London: Plenum;
    [Google Scholar]
  5. Cypionka H. 2000; Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848 [CrossRef]
    [Google Scholar]
  6. Cypionka H., Pfennig N. 1986; Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol 143:366–369
    [Google Scholar]
  7. Dilling W., Cypionka H. 1990; Aerobic respiration by sulfate-reducing bacteria. FEMS Microbiol Lett 71:123–128
    [Google Scholar]
  8. Dimroth P. 1992; The ATPases of Propionigenium modestum and Bacillus alcalophilus . Strategies for ATP synthesis under low energy conditions. Biochim Biophys Acta 1101236–239
    [Google Scholar]
  9. Fitz R. M., Cypionka H. 1989; A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans . Arch Microbiol 152:369–376 [CrossRef]
    [Google Scholar]
  10. Fuseler K., Krekeler D., Sydow U., Cypionka H. 1996; A common pathway of sulfide oxidation by sulfate-reducing bacteria. FEMS Microbiol Lett 144:129–134 [CrossRef]
    [Google Scholar]
  11. Glasemacher J., Schönheit P. 1992; Purification of Na+/H+-antiporter in methanogenic bacteria. Bioengineering 8:57
    [Google Scholar]
  12. Heise R., Gottschalk G., Müller V. 1993; Acetogenesis and ATP synthesis in Acetobacterium woodii are coupled via a transmembrane primary sodium ion gradient. FEMS Microbiol Lett 112:261–268 [CrossRef]
    [Google Scholar]
  13. Hoffmann A., Dimroth P. 1991; The electrochemical proton potential of Bacillus alkalophilus . Eur J Biochem 201:467–473 [CrossRef]
    [Google Scholar]
  14. Jones B. E., Grant W. D., Duckworth A. W., Owenson G. G. 1998; Microbial diversity of soda lakes. Extremophiles 2:191–200 [CrossRef]
    [Google Scholar]
  15. Krämer M., Cypionka H. 1989; Sulfate formation via ATP sulfurylase in thiosulfate- and sulfite-disproportionating bacteria. Arch Microbiol 151:232–237 [CrossRef]
    [Google Scholar]
  16. Kreke B., Cypionka H. 1994; Role of sodium ions for sulfate transport and energy metabolism in Desulfovibrio salexigens . Arch Microbiol 161:55–61 [CrossRef]
    [Google Scholar]
  17. Krulwich T. A. 1995; Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410 [CrossRef]
    [Google Scholar]
  18. Krulwich T. A., Ito M., Gilmour R., Guffanti A. A. 1997; Mechanisms of cytoplasmic pH regulation in alkaliphilic strains of Bacillus . Extremophiles 1:163–169 [CrossRef]
    [Google Scholar]
  19. Mitchell P., Moyle J. 1969; Translocation of some anions, cations and acids in rat liver mitochondria. Eur J Biochem 9:149–155 [CrossRef]
    [Google Scholar]
  20. Nethe-Jaenchen R., Thauer R. K. 1984; Growth yields and saturation constant of Desulfovibrio vulgaris in chemostat culture. Arch Microbiol 137:236–240 [CrossRef]
    [Google Scholar]
  21. Pfennig N. 1978; Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae . Int J Syst Bacteriol 28:283–288 [CrossRef]
    [Google Scholar]
  22. Pikuta E. V., Zhilina T. N., Zavarzin G. A., Kostrikina N. A., Osipov G. A., Rainey F. A. 1998; Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Microbiology English translation of Mikrobiologiya 67:105–113
    [Google Scholar]
  23. Pirt S. J. 1982; Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch Microbiol 133:300–302 [CrossRef]
    [Google Scholar]
  24. Prowe S. G., Driessen A. J. M., Antranikian G., Konings W. N., van de Vossenberg J. L. C. M. 1996; Sodium-coupled energy transduction in the newly isolated thermoalkaliphilic strain LBS3. J Bacteriol 178:4099–4104
    [Google Scholar]
  25. Pusheva M. A., Pitryuk A. V., Berestovskaya Y. Y. 1999; Metabolic pecularities of the extremely alkaliphilic sulfate-reducing bacteria Desulfonatronum lacustre and Desulfonatronovibrio hydrogenovorans. Microbiology English translation of Mikrobiologiya 68:574–579
    [Google Scholar]
  26. Pusheva M. A., Pitryuk A. V., Zavarzin G. A. 2000; Na+- and H+-dependent ATP synthesis in extremely alkaliphilic anaerobes. Doklady Biol Sci (English translation of Doklady Akad Nauk SSSR Biol Sci Sect 374, 833–835). 374546–548
  27. Scholes P., Mitchell P. 1970; Acid–base titration across the plasma membrane of Micrococcus denitrificans : factors affecting the effective proton conductance and the respiratory rate. J Bioenerg 1:61–72 [CrossRef]
    [Google Scholar]
  28. Stahlmann J., Warthmann R., Cypionka H. 1991; Na+-dependent accumulation of sulfate and thiosulfate in marine sulfate-reducing bacteria. Arch Microbiol 155:554–558 [CrossRef]
    [Google Scholar]
  29. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180
    [Google Scholar]
  30. Tokuda H., Unemoto T. 1982; Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus . J Biol Chem 257:10007–10014
    [Google Scholar]
  31. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137:163–167 [CrossRef]
    [Google Scholar]
  32. Varma A., Thauer R. K., Schönheit P. 1983; Electrogenic sodium ion/proton antiport in Desulfovibrio vulgaris . Arch Microbiol 136:69–73 [CrossRef]
    [Google Scholar]
  33. Zavarzin G. A., Zhilina T. N., Kevbrin V. V. 1999; The alkaliphilic microbial community and its functional diversity. Microbiology English translation of Mikrobiologiya 68:503–521
    [Google Scholar]
  34. Zhilina T. N., Zavarzin G. A. 1994; Alkaliphilic anaerobic community at pH 10. Curr Microbiol 29:109–112 [CrossRef]
    [Google Scholar]
  35. Zhilina T. N., Zavarzin G. A., Rainey F. A., Pikuta E. N., Osipov G. A., Kostrikina N. A. 1997; Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-853
Loading
/content/journal/micro/10.1099/00221287-148-3-853
Loading

Data & Media loading...

Most cited Most Cited RSS feed