1887

Abstract

subsp. , a Gram-negative phytopathogenic bacterium, secretes an extracellular metalloprotease, PrtW. Previous results demonstrated that protease activity is necessary for the normal progression of disease symptoms caused by this bacterium. The present study revealed that the gene constitutes an independent transcriptional unit. It is demonstrated that introduction of the plasmid into the mutant restores the protease activity in this strain. Gene fusions to the (β-glucuronidase) reporter were employed to analyse the transcription of . The transcription of is dependent on many environmental signals. When the bacteria were grown in the presence of potato extract, the expression of the protease gene was markedly higher at the beginning of the exponential phase of growth than that observed when cells were grown in the presence of polygalacturonate (PGA). Analysis of the promoter revealed that an essential regulatory region resided between 371 and 245 bp 5′ of the translational start site. As this sequence showed no homology to the KdgR box it may be involved in the binding of an unknown negative regulator protein in subsp. . The differential responses of expression to potato extract and to PGA appeared to be dependent on the KdgR repressor and the response regulator ExpA. According to the results presented here, it is conceivable that the multiple regulatory network allows flexibility in the expression of the gene during different stages of infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-835
2002-03-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480835a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-835&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Strahl K.. 1987; Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Barras F., Chatterjee A. K., van Gijsegem F.. 1994; Extracellular enzymes and pathogenesis of soft-rot Erwinia . Annu Rev Phytopathol32:201–234[CrossRef]
    [Google Scholar]
  3. Basse C. W., Fath A., Boller T.. 1993; High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors. J Biol Chem268:14724–14731
    [Google Scholar]
  4. Bauchop T., Elsden S. R.. 1960; The growth of micro-organisms in relation to their energy supply. J Gen Microbiol23:457–469[CrossRef]
    [Google Scholar]
  5. Bender C. L., Alarcon-Chaidez F., Gross D. C.. 1999; Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev63:266–292
    [Google Scholar]
  6. Eriksson A. R. B., Andersson R. A., Pirhonen M., Palva E. T.. 1998; Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp . carotovora . Mol Plant–Microbe Interact11:743–752[CrossRef]
    [Google Scholar]
  7. Frederick R. D., Chiu J., Bennetzen J. L., Handa A. K.. 1997; Identification of a pathogenicity locus, rpfA , in Erwinia carotovora subsp. carotovora that encodes a two-component sensor-regulator protein. Mol Plant–Microbe Interact6:407–415
    [Google Scholar]
  8. Ghigo J.-M., Wandersman C.. 1992; A fourth metalloprotease gene in Erwinia chrysanthemi . Res Microbiol143:857–867[CrossRef]
    [Google Scholar]
  9. Guzzo J., Pages J. M., Duong F., Lazdunski A., Murgier M.. 1991; Pseudomonas aeruginosa alkaline protease: evidence for secretion genes and study of secretion mechanisms. J Bacteriol173:5290–5297
    [Google Scholar]
  10. Harris S. J., Shih Y.-L., Bentley S. D., Salmond G. P. C.. 1998; The hexA gene of Erwinia carotovora encodes a LysR homologue and regulates motility and the expression of multiple virulence determinants. Mol Microbiol29:705–717
    [Google Scholar]
  11. Heilbronn J., Johnston D. J., Dunbar B., Lyon G.. 1995; Purification of a metalloprotease produced by Erwinia carotovora spp. and the degradation of potato lectin in vitro. Physiol Mol Plant Physiol 47. 285–292[CrossRef]
  12. Huang J., Yindeeyoungyeon W. Y., Garg R. P., Denny T. P., Schell M. A.. 1998; Joint transcriptional control of xpsR , the unusual signal integrator of the Ralstonia solanacearum virulence gene regulatory network, by a response regulator and a LysR-type transcriptional activator. J Bacteriol180:2736–2743
    [Google Scholar]
  13. Hyytiäinen H., Montesano M., Palva E. T.. 2001; Global regulators ExpA (GacA) and KdgR modulate extracellular enzyme gene expression through the RsmA– rsmB system in Erwinia carotovora subsp. carotovora . Mol Plant–Microbe Interact14:931–938[CrossRef]
    [Google Scholar]
  14. Kato T., Shiraishi T., Toyoda K., Saitoh K., Satoh Y., Tahara M., Yamada T., Oku H.. 1993; Inhibition of ATPase activity in pea plasma membranes by fungal suppressors from Mycosphaerella pinoides and their peptide moieties. Plant Cell Physiol34:439–445
    [Google Scholar]
  15. Laemmli U. K.. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  16. Létoffé S., Delepelaire P., Wandersman C.. 1990; Protease secretion by Erwinia chrysanthemi : the specific secretion functions are analogous to those of Escherichia coli alpha-haemolysin. EMBO J9:1375–1382
    [Google Scholar]
  17. Liu Y., Murata H., Chatterjee A., Chatterjee A. K.. 1993; Characterization of a novel regulatory gene aepA that controls extracellular enzyme production in the phytopathogenic bacterium Erwinia carotovora subsp . carotovora . Mol Plant–Microbe Interact6:299–308[CrossRef]
    [Google Scholar]
  18. Liu Y., Wang A., Mukherjee A., Chatterjee A. K.. 1996; RecA relieves negative autoregulation of rdgA , which specifies a component of the RecA–Rdg regulatory circuit controlling pectin lyase production in Erwinia carotovora subsp. carotovora. Mol Microbiol22:909–918[CrossRef]
    [Google Scholar]
  19. Liu Y., Jiang G., Cui Y., Mukherjee A., Ma W. L., Chatterjee A. K.. 1999; kdgR Ecc negatively regulates genes for pectinases, cellulases, protease, harpinEcc, and a global RNA regulator in Erwinia carotovora subsp. carotovora . J Bacteriol181:2411–2422
    [Google Scholar]
  20. Marits R., Laasik E., Kõiv V., Mäe A.. 1999; Isolation of an extracellular protease gene of Erwinia carotovora subsp. carotovora strain SCC3193 by transposon mutagenesis and the role of protease in phytopathogenicity. Microbiology145:1959–1966[CrossRef]
    [Google Scholar]
  21. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor; Laboratory, NY: Cold Spring Harbor;
    [Google Scholar]
  22. Mukherjee A., Cui W., Liu Y., Domenyo C. K., Chatterjee A. K.. 1996; Global regulation in Erwinia species by Erwinia carotovora rsmA , a homologue of Escherichia coli csrA : repression of secondary metabolites, pathogenicity and hypersensitive reaction. Microbiology142:427–434[CrossRef]
    [Google Scholar]
  23. Novel G., Didier-Fichet M. L., Stoeber F.. 1974; Inducibility of β-glucuronidase in wild-type and hexuronate-negative mutants of Escherichia coli K-12. J Bacteriol120:89–95
    [Google Scholar]
  24. Palva T. K., Holmström K.-O., Heino P., Palva E. T.. 1993; Induction of plant defense response by exoenzymes of Erwinia carotovora subsp. carotovora . Mol Plant–Microbe Interact6:190–196[CrossRef]
    [Google Scholar]
  25. Pérombelon M. C. M., Kelman A.. 1980; Ecology of the soft rot Erwinias. Annu. Rev Phytopathol18:361–387[CrossRef]
    [Google Scholar]
  26. Pirhonen M., Saarilahti H., Karlsson M.-B., Palva E. T.. 1991; Identification of pathogenicity determinants of Erwinia carotovora subspecies carotovora by transposon mutagenesis. Mol Plant–Microbe Interact4:276–283[CrossRef]
    [Google Scholar]
  27. Py B., Bortoli-German I., Haiech I., Chippaux M., Barras F.. 1991; Cellulase EG2 of Erwinia chrysanthemi : structural organization and importance of His 98 and Glu 133 residues for catalysis. Protein Eng4:325–333[CrossRef]
    [Google Scholar]
  28. Sambrook J., Maniatis T., Fritsch E. F.. 1982; Molecular Cloning: a Laboratory Manual Cold Spring Harbor; Laboratory, NY: Cold Spring Harbor;
    [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A.. 1977; DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA74:5463–5467[CrossRef]
    [Google Scholar]
  30. Thompson N. R., Cox A., Bycroft B. W., Stewart G. S. A. B., Williams P., Salmond G. P. C.. 1997; The Rap and Hor proteins of Erwinia , Serratia and Yersinia : a novel subgroup in a growing superfamily of proteins regulating diverse physiological processes in bacterial pathogens. Mol Microbiol26:531–544[CrossRef]
    [Google Scholar]
  31. Vidal S., Denecke J., Palva E. T., Ponce de León I.. 1997; Salicylic acid and the plant pathogen Erwinia carotovora induce defence genes via antagonistic pathways. Plant J11:115–123[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-835
Loading
/content/journal/micro/10.1099/00221287-148-3-835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error