1887

Abstract

Upstream of the and cluster in 2.4.3 is a previously uncharacterized gene that has been designated is only expressed when 2.4.3 is grown under denitrifying conditions. Expression of is dependent on the transcriptional regulator NnrR, which also regulates expression of genes required for the reduction of nitrite to nitrous oxide, including and . Deletion analysis indicated the sequence 5′-TTGCG(N)CACAA-3′, which is similar to sequences found in and , is required for expression. Mutation of this sequence to the consensus Fnr-binding sequence by changing two bases in each half site caused expression to become nitrate independent. Inactivation of did not affect nitric oxide metabolism, nor did it affect expression of any of the genes involved in nitric oxide metabolism. However, taxis towards nitrate and nitrite was affected by inactivation. Purification of a histidine-tagged NnrS demonstrated that NnrS is a haem- and copper-containing membrane protein. Genes encoding putative orthologues of NnrS are sometimes but not always found in bacteria encoding nitrite and/or nitric oxide reductase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-825
2002-03-01
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480825a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-825&mimeType=html&fmt=ahah

References

  1. Arai, H., Igarashi, Y. & Kodama, T. ( 1995; ). Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP-FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett 371, 73-76.[CrossRef]
    [Google Scholar]
  2. Bartnikas, T. B., Tosques, I. E., Laratta, W. P., Shi, J. & Shapleigh, J. P. ( 1997; ). Characterization of the region encoding the nitric oxide reductase of Rhodobacter sphaeroides 2.4.3. J Bacteriol 179, 3534-3540.
    [Google Scholar]
  3. Berks, B. C., Ferguson, S. J., Moir, J. W. B. & Richardson, D. J. ( 1995; ). Enzymes and associated electron transport systems that catalyze the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta 1232, 97-173.[CrossRef]
    [Google Scholar]
  4. Berry, E. A. & Trumpower, B. L. ( 1987; ). Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal Biochem 161, 1-15.[CrossRef]
    [Google Scholar]
  5. Birnboim, H. C. & Doly, J. ( 1979; ). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7, 1513-1523.[CrossRef]
    [Google Scholar]
  6. Chung, C. T., Niemela, S. L. & Miller, R. H. ( 1989; ). One-step transformation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86, 2172-2175.[CrossRef]
    [Google Scholar]
  7. Dawson, J. H. & Sono, M. ( 1987; ). Cytochrome P-450 and chloroperoxidase. Thiolate ligated heme enzyme spectroscopic determination of their active site structure and mechanistic implications of thiolate ligation. Chem Rev 87, 1255-1276.[CrossRef]
    [Google Scholar]
  8. Gardner, P. R., Gardner, A. M., Martin, L. A. & Salzman, A. L. ( 1998; ). Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc Natl Acad Sci USA 95, 10378-10383.[CrossRef]
    [Google Scholar]
  9. Gauden, D. E. & Armitage, J. P. ( 1995; ). Electron transport-dependent taxis in Rhodobacter sphaeroides. J Bacteriol 177, 5853-5859.
    [Google Scholar]
  10. Glockner, A. B. & Zumft, W. G. ( 1996; ). Sequence analysis of an internal 9·72-kb fragment from the 30-kb denitrification gene cluster of Pseudomonas stutzeri. Biochimica et Biophysica Acta 1277, 6-12.[CrossRef]
    [Google Scholar]
  11. Hosler, J. P., Fetter, J., Tecklenberg, M. M. J., Espe, M., Lerma, C. & Ferguson-Miller, S. ( 1992; ). Cytochrome aa 3 of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase: purification, kinetics, proton pumping and spectral analysis. J Biol Chem 267, 24264-24272.
    [Google Scholar]
  12. Jain, R. & Shapleigh, J. P. ( 2001; ). Characterization of nirV and a gene encoding a novel pseudoazurin in Rhodobacter sphaeroides 2.4.3. Microbiology 147, 2505-2515.
    [Google Scholar]
  13. Keen, N. T., Tamaki, S., Kobayashi, D. & Trollinger, D. ( 1988; ). Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70, 191-197.[CrossRef]
    [Google Scholar]
  14. Kokotek, W. & Lotz, W. ( 1989; ). Construction of a lacZ-kanamycin-resistance cassette, useful for site-directed mutagenesis and as a promoter probe. Gene 84, 467-471.[CrossRef]
    [Google Scholar]
  15. Leuking, D. R., Fraley, R. T. & Kaplan, S. ( 1978; ). Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. J Biol Chem 253, 451-457.
    [Google Scholar]
  16. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  17. Manoil, C. ( 1990; ). Analysis of protein localization by use of gene fusions with complementary properties. J Bacteriol 172, 1035-1042.
    [Google Scholar]
  18. McMillan, K., Salerno, J. C. & Masters, B. S. ( 1996; ). Nitric oxide synthases: analogies to cytochome P450 monooxygenases and characterization of recombinant rat neuronal nitric oxide synthase hemoprotein. Methods Enzymol 268, 460-472.
    [Google Scholar]
  19. Membrillo-Hernandez, J., Coopamah, M. D., Anjum, M. F., Stevanin, T. M., Kelly, A., Hughes, M. N. & Poole, R. K. ( 1999; ). The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a ‘‘Nitric oxide Releaser,’’ and paraquat and is essential for transcriptional responses to oxidative stress. J Biol Chem 274, 748-754.[CrossRef]
    [Google Scholar]
  20. Mitchell, D. M. & Gennis, R. B. ( 1995; ). Rapid purification of wildtype and mutant cytochrome c oxidase from Rhodobacter sphaeroides by Ni2+-NTA affinity chromatography. FEBS Lett 368, 148-150.[CrossRef]
    [Google Scholar]
  21. Murthy, M. R. N., Reid, T. J., Sicignano, A., Tanako, N. & Rossman, M. G. ( 1981; ). Structure of beef liver catalase. J Mol Biol 152, 465-499.[CrossRef]
    [Google Scholar]
  22. Olesen, K. O., Veselov, A., Zhao, Y., Wang, Y., Danner, B., Scholes, C. P. & Shapleigh, J. P. ( 1998; ). Spectroscopic, kinetic and electrochemical characterization of heterologously expressed wild type and mutant forms of copper-containing nitrite reductase from Rhodobacter sphaeroides 2.4.3. Biochemistry 37, 6086-6094.[CrossRef]
    [Google Scholar]
  23. Payne, W. J. (1981). Denitrification. New York: Wiley.
  24. Peiffer, W. E., Ingle, R. T. & Ferguson-Miller, S. ( 1990; ). Structurally unique plant cytochrome c oxidase isolated from wheat germ, a rich source of plant mitochondrial enzymes. Biochemistry 29, 8696-8701.[CrossRef]
    [Google Scholar]
  25. Salerno, J. C., Martasek, P., Roman, L. J. & Masters, B. S. ( 1996; ). Electron paramagnetic resonance spectroscopy of the heme domain of inducible nitric oxide synthase: binding of ligands at the arginine site induces changes in the heme ligation geometry. Biochemistry 35, 7626-7630.[CrossRef]
    [Google Scholar]
  26. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1, 784-791.[CrossRef]
    [Google Scholar]
  27. Solomon, E. I., Baldwin, M. J. & Lowery, M. D. ( 1992; ). Electronic structure of active sites in copper proteins: contributions to reactivity. Chem Rev 92, 521-542.[CrossRef]
    [Google Scholar]
  28. Spiro, S. ( 1994; ). The FNR family of transcriptional regulators. Antonie Leeuwenhoek 66, 23-36.[CrossRef]
    [Google Scholar]
  29. Stover, C., Pham, X., Erwin, A. & 23 other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  30. Toffanin, A., Wu, Q., Maskus, M., Casella, S., Abruna, H. D. & Shapleigh, J. P. ( 1996; ). Characterization of the gene encoding nitrite reductase and the physiological consequences of its expression in the nondenitrifying Rhizobium ‘‘hedysari’’ strain HCNT1. Appl Environ Microbiol 62, 4019-4025.
    [Google Scholar]
  31. Tosques, I. E., Shi, J. & Shapleigh, J. P. ( 1996; ). Cloning and characterization of nnrR, whose product is required for the expression of proteins involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Bacteriol 178, 4958-4964.
    [Google Scholar]
  32. Tosques, I. E., Kwiatkowski, A. V., Shi, J. & Shapleigh, J. P. ( 1997; ). Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3. J Bacteriol 179, 1090-1095.
    [Google Scholar]
  33. van Spanning, R. J. M., DeBoer, A. P. N., Reijnders, W. N. M., Spiro, S., Westerhoff, H. V., Stouthamer, A. H. & Van der Oost, J. ( 1995; ). Nitrite and nitric oxide reduction in Paracoccus denitrificans is under the control of NnrR, a regulatory protein that belongs to the FNR family of transcriptional activators. FEBS Lett 360, 151-159.[CrossRef]
    [Google Scholar]
  34. van Spanning, R. J. M., De Boer, A. P. N., Reijnders, W. N. M., Westerhoff, H. V., Stouthamer, A. H. & Van Der Oost, J. ( 1997; ). FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol Microbiol 23, 893-907.[CrossRef]
    [Google Scholar]
  35. Vollack, K. & Zumft, W. ( 2001; ). Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri. J Bacteriol 183, 2516-2526.[CrossRef]
    [Google Scholar]
  36. Ye, R. W., Haas, D., Ka, J. O., Krishnapillai, V., Zimmermann, A., Baird, C. & Tiedje, J. M. ( 1995; ). Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J Bacteriol 177, 3606-3609.
    [Google Scholar]
  37. Zhang, X. & Ebright, R. H. ( 1990; ). Substitution of 2 base pairs (1 base pair per DNA half site) within the Escherichia coli lac promoter DNA site for catabolite gene activator protein places the lac promoter in the FNR regulon. J Biol Chem 265, 12400-12403.
    [Google Scholar]
  38. Zumft, W. G. ( 1993; ). The biological role of nitric oxide in bacteria. Arch Microbiol 160, 253-264.[CrossRef]
    [Google Scholar]
  39. Zumft, W. G. ( 1997; ). Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61, 533-616.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-825
Loading
/content/journal/micro/10.1099/00221287-148-3-825
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error