1887

Abstract

The genes directing the synthesis of poly(ribitol phosphate), the main teichoic acid in strain W23, were sequenced. They are organized in two divergently transcribed operons, and , as are the genes specifying poly(glycerol phosphate) synthesis in 168. The features of the genes as well as the putative participation of their products in the proposed biosynthesis pathway of poly(ribitol phosphate) are presented. The and genes, which are most likely involved in the synthesis of the linkage unit (the entity coupling teichoic acid to peptidoglycan), are separated by 508 nt. Sequences of the outer segments of this regulatory region are similar to the two divergent promoter regions identified upstream of the and genes in strain 168. However, in W23, these regions, which also included functional promoters, are separated by an additional DNA segment of about 100 nt, on which two new mRNA starts, one in each direction, were identified. The regulatory regions of teichoic acid divergons of , and eight strains of were cloned and sequenced. In four strains and in , their length and sequence are similar to the regulatory region of W23. In the others, including , they are of the 168-type. Analysis of nucleotide sequences of a non-coding grey hole, present in the region of strain 168, revealed higher similarities to than to entities. This suggests that at least part of the genes specifying the synthesis of glucosylated poly(glycerol phosphate) in strain 168 was introduced by horizontal gene transfer into a strain originally synthesizing a ribitol-phosphate-containing teichoic acid.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-815
2002-03-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480815a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-815&mimeType=html&fmt=ahah

References

  1. Araki, Y. & Ito, E. ( 1989; ). Linkage units in cell walls of Gram-positive bacteria. Crit Rev Microbiol 17, 121-135.[CrossRef]
    [Google Scholar]
  2. Armstrong, J. J., Baddiley, J. & Buchanan, J. G. ( 1960; ). Structure of the ribitol teichoic acid from walls of Bacillus subtilis. Biochem J 76, 610-621.
    [Google Scholar]
  3. Chambers, S. P., Prior, S. E., Barstow, D. A. & Minton, N. P. ( 1988; ). The PMTL nic-cloning vector. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68, 139-149.[CrossRef]
    [Google Scholar]
  4. Chin, T., Younger, J. & Glaser, L. ( 1968; ). Synthesis of teichoic acid. VII. Synthesis of teichoic acids during spore germination. J Bacteriol 95, 2024-2050.
    [Google Scholar]
  5. Chung, C. T. & Miller, R. H. ( 1988; ). A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Res 16, 3580.[CrossRef]
    [Google Scholar]
  6. Del Sal, G., Manfioletti, G. & Schneider, C. ( 1988; ). A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res 16, 9878.[CrossRef]
    [Google Scholar]
  7. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387-395.[CrossRef]
    [Google Scholar]
  8. Ellwood, D. C. & Tempest, D. W. ( 1969; ). Control of teichoic acid and teichuronic acid biosynthesis in chemostat cultures of Bacillus subtilis var. niger. Biochem J 111, 1-5.
    [Google Scholar]
  9. Follens, A., Veiga-da-Cunha, M., Merckx, R., van Schaftingen, E. & van Eldere, J. ( 1999; ). acs1 of Haemophilus influenzae type a capsulation locus region II encodes a bifunctional ribulose 5-phosphate reductase-CDP-ribitol pyrophosphorylase. J Bacteriol 181, 2001-2007.
    [Google Scholar]
  10. Freymond, P.-P. (1995). Génétique et biochimie des acides téichoı̈ques secondaires de Bacillus subtilis 168 et W23. PhD thesis, Lausanne University, Switzerland.
  11. Grossberger, D. ( 1987; ). Minipreps of DNA from bacteriophage lambda. Nucleic Acids Res 15, 6737.[CrossRef]
    [Google Scholar]
  12. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557-580.[CrossRef]
    [Google Scholar]
  13. Honeyman, A. L. & Stewart, G. C. ( 1989; ). The nucleotide sequence of the rodC operon of Bacillus subtilis. Mol Microbiol 3, 1257-1268.[CrossRef]
    [Google Scholar]
  14. Karamata, D., Pooley, H. M. & Monod, M. ( 1987; ). Expression of heterologous genes for wall teichoic acids in Bacillus subtilis 168. Mol Gen Genet 207, 73-81.[CrossRef]
    [Google Scholar]
  15. Kunst, F., Ogasawara, N., Moszer, I. & 148 other authors ( 1997; ). The complete genome sequence of the Gram positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  16. Kuroda, M., Ohta, T., Uchiyama, I. & 34 other authors ( 2001; ). Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240.[CrossRef]
    [Google Scholar]
  17. Lazarevic, V., Margot, P., Soldo, B. & Karamata, D. ( 1992; ). Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-l-alanine amidase and its modifier. J Gen Microbiol 138, 1949-1961.[CrossRef]
    [Google Scholar]
  18. Lazarevic, V., Mauël, C., Soldo, B., Freymond, P.-P., Margot, P. & Karamata, D. ( 1995; ). Sequence analysis of the 308° to 311° segment of the Bacillus subtilis 168 chromosome, a region devoted to cell wall metabolism containing non-coding grey holes which reveal chromosomal rearrangements. Microbiology 141, 329-335.[CrossRef]
    [Google Scholar]
  19. Liu, W., Eder, S. & Hulett, F. M. ( 1998; ). Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P. J Bacteriol 180, 753-758.
    [Google Scholar]
  20. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208-218.[CrossRef]
    [Google Scholar]
  21. Mauël, C., Young, M. & Karamata, D. ( 1991; ). Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. J Gen Microbiol 137, 929-941.[CrossRef]
    [Google Scholar]
  22. Mauël, C., Young, M., Monsutti-Grecescu, A., Marriot, S. A. & Karamata, D. ( 1994; ). Analysis of Bacillus subtilis tag gene expression using transcriptional fusions. Microbiology 140, 2279-2288.[CrossRef]
    [Google Scholar]
  23. Mauël, C., Bauduret, A., Chervet, C., Beggah, S. & Karamata, D. ( 1995; ). In Bacillus subtilis 168, teichoic acid of the cross-wall may be different from that of the cylinder: a hypothesis based on transcription analysis of tag genes. Microbiology 141, 2379-2389.[CrossRef]
    [Google Scholar]
  24. Pooley, H. M., Abellan, F.-X. & Karamata, D. ( 1991; ). A conditional-lethal mutant of Bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyltransferase, an enzyme specific for the synthesis of the major wall teichoic acid. J Gen Microbiol 137, 921-928.[CrossRef]
    [Google Scholar]
  25. Pooley, H. M., Abellan, F.-X. & Karamata, D. ( 1992; ). CDP-glycerol:poly(glycerophosphate) glycerophosphatetransferase, which is involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF (rodC). J Bacteriol 174, 646-649.
    [Google Scholar]
  26. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Soldo, B., Lazarevic, V., Pagni, M. & Karamata, D. ( 1999; ). Teichuronic acid operon of Bacillus subtilis 168. Mol Microbiol 31, 795-805.[CrossRef]
    [Google Scholar]
  28. Vicente, M., Kushner, S. R., Garrido, T. & Aldea, M. ( 1991; ). The role of the ‘gear-box’ in the transcription of essential genes. Mol Microbiol 5, 2085-2091.[CrossRef]
    [Google Scholar]
  29. Ward, J. B. ( 1981; ). Teichoic and teichuronic acids: biosynthesis, assembly and location. Microbiol Rev 45, 211-243.
    [Google Scholar]
  30. Young, M., Mauël, C., Margot, P. & Karamata, D. ( 1989; ). Pseudo-allelic relationship between non-homologous genes concerned with biosynthesis of polyglycerol phosphate and polyribitol phosphate teichoic acids in Bacillus subtilis strains 168 and W23. Mol Microbiol 3, 1805-1812.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-815
Loading
/content/journal/micro/10.1099/00221287-148-3-815
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error