1887

Abstract

() HL PM-1 grows on 2,4,6-trinitrophenol (picric acid) or 2,4-dinitrophenol (2,4-DNP) as sole nitrogen source. A gene cluster involved in picric acid degradation was recently identified. The functional assignment of three of its genes, , and , and the tentative functional assignment of a fourth one, , is reported. The genes were expressed in as His-tag fusion proteins that were purified by Ni-affinity chromatography. The enzyme activity of each protein was determined by spectrophotometry and HPLC analyses. NpdI, a hydride transferase, catalyses a hydride transfer from reduced F to the aromatic ring of picric acid, generating the hydride σ-complex (hydride Meisenheimer complex) of picric acid (H-PA). Similarly, NpdI also transformed 2,4-DNP to the hydride σ-complex of 2,4-DNP. A second hydride transferase, NpdC catalysed a subsequent hydride transfer to H-PA, to produce a dihydride σ-complex of picric acid (2H-PA). All three reactions required the activity of NpdG, an NADPH-dependent F reductase, for shuttling the hydride ions from NADPH to F. NpdH converted 2H-PA to a hitherto unknown product, X. The results show that , and play a key role in the initial steps of picric acid degradation, and that may prove to be important in the later stages.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-799
2002-03-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480799a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-799&mimeType=html&fmt=ahah

References

  1. Aguirre, A., Sanz de Galdeano, C., Oleaga, J. M., Eizaguirre, X. & Diaz Perez, J. L. ( 1993; ). Allergic contact dermatitis from picric acid. Contact Dermatitis 28, 291.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403-410.[CrossRef]
    [Google Scholar]
  3. Andres, M. I., Repetto, G., Sanz, P. & Repetto, M. ( 1996; ). Comparative effects of the metabolic inhibitors 2,4-dinitrophenol and iodoacetate on mouse neuroblastoma cells in vitro. Toxicology 110, 123-132.[CrossRef]
    [Google Scholar]
  4. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (2001). Current Protocols in Molecular Biology. Chichester, New York: Wiley.
  5. Behrend, C. & Heesche-Wagner, K. ( 1999; ). Formation of hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Appl Environ Microbiol 65, 1372-1377.
    [Google Scholar]
  6. Berk, H. & Thauer, R. K. ( 1997; ). Function of coenzyme F420-dependent NADP reductase in methanogenic archaea containing an NADP-dependent alcohol dehydrogenase. Arch Microbiol 168, 396-402.[CrossRef]
    [Google Scholar]
  7. Blasco, R., Moore, E., Wray, V., Pieper, D., Timmis, K. & Castillo, F. ( 1999; ). 3-Nitroadipate, a metabolic intermediate for mineralization of 2,4-dinitrophenol by a new strain of a Rhodococcus species. J Bacteriol 181, 149-152.
    [Google Scholar]
  8. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248-254.[CrossRef]
    [Google Scholar]
  9. Bult, C. J., White, O., Olsen, G. J. & 37 other authors ( 1996; ). Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073.
    [Google Scholar]
  10. Dorn, E., Hellwig, M., Reineke, W. & Knackmuss, H.-J. ( 1974; ). Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99, 61-70.[CrossRef]
    [Google Scholar]
  11. Ebert, S., Rieger, P. G. & Knackmuss, H.-J. ( 1999; ). Function of coenzyme F420 in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. J Bacteriol 181, 2669-2674.
    [Google Scholar]
  12. Ebert, S., Fischer, P. & Knackmuss, H.-J. (2002). Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. Biodegradation (in press).
  13. Eirich, L. D., Vogels, G. D. & Wolfe, R. S. ( 1978; ). Proposed structure for coenzyme F420 from Methanobacterium. Biochemistry 17, 4583-4593.[CrossRef]
    [Google Scholar]
  14. Eker, A. P., Hessels, J. K. & Meerwaldt, R. ( 1989; ). Characterization of an 8-hydroxy-5-deazaflavin:NADPH oxidoreductase from Streptomyces griseus. Biochim Biophys Acta 990, 80-86.[CrossRef]
    [Google Scholar]
  15. French, C. E., Nicklin, S. & Bruce, N. C. ( 1998; ). Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64, 2864-2868.
    [Google Scholar]
  16. Hess, T. F., Schmidt, S. K., Silverstein, J. & Howe, B. ( 1990; ). Supplemental substrate enhancement of 2,4-dinitrophenol mineralization by a bacterial consortium. Appl Environ Microbiol 56, 1551-1558.
    [Google Scholar]
  17. Inoue, H., Nojima, H. & Okayama, H. ( 1990; ). High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23-28.[CrossRef]
    [Google Scholar]
  18. Klatte, S., Kroppenstedt, R. M. & Rainey, F. A. ( 1994; ). Rhodococcus opacus sp. nov., an unusual nutritionally versatile Rhodococcus species. Syst Appl Microbiol 17, 355-360.[CrossRef]
    [Google Scholar]
  19. Klenk, H. P., Clayton, R. A., Tomb, J. F. & 22 other authors ( 1997; ). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370.
    [Google Scholar]
  20. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  21. Lenke, H. & Knackmuss, H.-J. ( 1992; ). Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2. Appl Environ Microbiol 58, 2933-2937.
    [Google Scholar]
  22. Lenke, H. & Knackmuss, H.-J. ( 1996; ). Initial hydrogenation and extensive reduction of substituted 2,4-dinitrophenols. Appl Environ Microbiol 62, 784-790.
    [Google Scholar]
  23. Lenke, H., Pieper, D. H., Bruhn, C. & Knackmuss, H.-J. ( 1992; ). Degradation of 2,4-dinitrophenol by two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2. Appl Environ Microbiol 58, 2928-2932.
    [Google Scholar]
  24. Lenke, H., Achtnich, C. & Knackmuss, H.-J. ( 2000; ). Perspectives of bioelimination of polynitroaromatic compounds. In Biodegradation of Nitroaromatic Compounds and Explosives , pp. 91-126. Edited by J. C. Spain, J. B. Hughes & H. J. Knackmuss. Boca Raton:CRC Press.
  25. Linsinger, G., Wilhelm, S., Wagner, H. & Hacker, G. ( 1999; ). Uncouplers of oxidative phosphorylation can enhance a Fas death signal. Mol Cell Biol 19, 3299-3311.
    [Google Scholar]
  26. Nishino, S. F., Spain, J. C. & He, Z. ( 2000; ). Strategies for aerobic degradation of nitroaromatic compounds by bacteria: process discovery to field application. In Biodegradation of Nitroaromatic Compounds and Explosives , pp. 7-61. Edited by J. C. Spain, J. B. Hughes & H. J. Knackmuss. Boca Raton:CRC Press.
  27. Pak, J. W., Knoke, K. L., Noguera, D. R., Fox, B. G. & Chambliss, G. H. ( 2000; ). Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66, 4742-4750.[CrossRef]
    [Google Scholar]
  28. Peck, M. W. ( 1989; ). Changes in concentrations of coenzyme F420 analogs during batch growth of Methanosarcina barkeri and Methanosarcina mazei. Appl Environ Microbiol 55, 940-945.
    [Google Scholar]
  29. Purwantini, E. & Daniels, L. ( 1996; ). Purification of a novel coenzyme F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis. J Bacteriol 178, 2861-2866.
    [Google Scholar]
  30. Purwantini, E., Mukhopadhyay, B., Spencer, R. W. & Daniels, L. ( 1992; ). Effect of temperature on the spectral properties of coenzyme F420 and related compounds. Anal Biochem 205, 342-350.[CrossRef]
    [Google Scholar]
  31. Rajan, J., Valli, K., Perkins, R. E., Sariaslani, F. S., Barns, S. M., Reysenbach, A. L., Rehm, S., Ehringer, M. & Pace, N. R. ( 1996; ). Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains. J Ind Microbiol 16, 319-324.[CrossRef]
    [Google Scholar]
  32. Rieger, P. G., Sinnwell, V., Preuss, A., Francke, W. & Knackmuss, H.-J. ( 1999; ). Hydride–Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. J Bacteriol 181, 1189-1195.
    [Google Scholar]
  33. Russ, R., Walters, D. M., Knackmuss, H.-J. & Rouviere, P. E. ( 2000; ). Identification of genes involved in picric acid and 2,4-DNP degradation by mRNA differential display. In Biodegradation of Nitroaromatic Compounds and Explosives, , pp. 127-143. Edited by J. C. Spain, J. B. Hughes & H. J. Knackmuss. Boca Raton:CRC Press.
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Severin, T. & Schmitz, R. ( 1962; ). Umsetzung von Nitroaromaten mit Natriumborhydrid. Chem Ber 95, 1417-1419.[CrossRef]
    [Google Scholar]
  36. Smith, D. R., Doucette-Stamm, L. A., Deloughery, C. & 22 other authors ( 1997; ). Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 179, 7135–7155.
    [Google Scholar]
  37. Spain, J. ( 2000; ). Introduction. In Biodegradation of Nitroaromatic Compounds and Explosives , pp. 1-5. Edited by J. C. Spain, J. B. Hughes & H. J. Knackmuss. Boca Raton:CRC Press.
  38. Stumpp, T., Wilms, B. & Altenbuchner, J. ( 2000; ). Ein neues, l-Rhamnose-induzierbares Expressionssystem für Escherichia coli. Biospektrum 1, 33-36.
    [Google Scholar]
  39. Tatusova, T. A. & Madden, T. L. ( 1999; ). blast 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174, 247-250.[CrossRef]
    [Google Scholar]
  40. Vorbeck, C., Lenke, H., Fischer, P., Spain, J. C. & Knackmuss, H.-J. ( 1998; ). Initial reductive reactions in anaerobic microbial metabolism of 2,4,6-trinitrotoluene (TNT). Appl Environ Microbiol 64, 246-252.
    [Google Scholar]
  41. Walters, D. M., Russ, R., Knackmuss, H.-J. & Pouviere, P. E. ( 2001; ). High-density sampling of a bacterial operon using mRNA differential display. Gene 273, 305-315.[CrossRef]
    [Google Scholar]
  42. Wilms, B., Hauck, A., Reuss, M., Syldatk, C., Mattes, R., Siemann, M. & Altenbuchner, J. ( 2001; ). High-cell-density fermentation for production of l-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng 73, 95-103.[CrossRef]
    [Google Scholar]
  43. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-799
Loading
/content/journal/micro/10.1099/00221287-148-3-799
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error