1887

Abstract

() HL PM-1 grows on 2,4,6-trinitrophenol (picric acid) or 2,4-dinitrophenol (2,4-DNP) as sole nitrogen source. A gene cluster involved in picric acid degradation was recently identified. The functional assignment of three of its genes, , and , and the tentative functional assignment of a fourth one, , is reported. The genes were expressed in as His-tag fusion proteins that were purified by Ni-affinity chromatography. The enzyme activity of each protein was determined by spectrophotometry and HPLC analyses. NpdI, a hydride transferase, catalyses a hydride transfer from reduced F to the aromatic ring of picric acid, generating the hydride σ-complex (hydride Meisenheimer complex) of picric acid (H-PA). Similarly, NpdI also transformed 2,4-DNP to the hydride σ-complex of 2,4-DNP. A second hydride transferase, NpdC catalysed a subsequent hydride transfer to H-PA, to produce a dihydride σ-complex of picric acid (2H-PA). All three reactions required the activity of NpdG, an NADPH-dependent F reductase, for shuttling the hydride ions from NADPH to F. NpdH converted 2H-PA to a hitherto unknown product, X. The results show that , and play a key role in the initial steps of picric acid degradation, and that may prove to be important in the later stages.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-799
2002-03-01
2020-03-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480799a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-799&mimeType=html&fmt=ahah

References

  1. Aguirre A., Oleaga J. M., Eizaguirre X., Diaz Perez J. L., Sanz de Galdeano C.. 1993; Allergic contact dermatitis from picric acid. Contact Dermatitis28:291[CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  3. Andres M. I., Repetto G., Sanz P., Repetto M.. 1996; Comparative effects of the metabolic inhibitors 2,4-dinitrophenol and iodoacetate on mouse neuroblastoma cells in vitro . Toxicology110:123–132[CrossRef]
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. 2001; Current Protocols in Molecular Biology Chichester, New York: Wiley;
    [Google Scholar]
  5. Behrend C., Heesche-Wagner K.. 1999; Formation of hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Appl Environ Microbiol65:1372–1377
    [Google Scholar]
  6. Berk H., Thauer R. K.. 1997; Function of coenzyme F420-dependent NADP reductase in methanogenic archaea containing an NADP-dependent alcohol dehydrogenase. Arch Microbiol168:396–402[CrossRef]
    [Google Scholar]
  7. Blasco R., Moore E., Wray V., Pieper D., Timmis K., Castillo F.. 1999; 3-Nitroadipate, a metabolic intermediate for mineralization of 2,4-dinitrophenol by a new strain of a Rhodococcus species. J Bacteriol181:149–152
    [Google Scholar]
  8. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  9. Bult C. J., White O., Olsen G. J.. 37 other authors 1996; Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science273:1058–1073
    [Google Scholar]
  10. Dorn E., Hellwig M., Reineke W., Knackmuss H.-J.. 1974; Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol99:61–70[CrossRef]
    [Google Scholar]
  11. Ebert S., Rieger P. G., Knackmuss H.-J.. 1999; Function of coenzyme F420 in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. J Bacteriol181:2669–2674
    [Google Scholar]
  12. Ebert S., Fischer P., Knackmuss H.-J.. 2002; Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. Biodegradation in press
    [Google Scholar]
  13. Eirich L. D., Vogels G. D., Wolfe R. S.. 1978; Proposed structure for coenzyme F420 from Methanobacterium . Biochemistry17:4583–4593[CrossRef]
    [Google Scholar]
  14. Eker A. P., Hessels J. K., Meerwaldt R.. 1989; Characterization of an 8-hydroxy-5-deazaflavin: NADPH oxidoreductase from Streptomyces griseus . Biochim Biophys Acta990:80–86[CrossRef]
    [Google Scholar]
  15. French C. E., Nicklin S., Bruce N. C.. 1998; Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol64:2864–2868
    [Google Scholar]
  16. Hess T. F., Schmidt S. K., Silverstein J., Howe B.. 1990; Supplemental substrate enhancement of 2,4-dinitrophenol mineralization by a bacterial consortium. Appl Environ Microbiol56:1551–1558
    [Google Scholar]
  17. Inoue H., Nojima H., Okayama H.. 1990; High efficiency transformation of Escherichia coli with plasmids. Gene96:23–28[CrossRef]
    [Google Scholar]
  18. Klatte S., Kroppenstedt R. M., Rainey F. A.. 1994; Rhodococcus opacus sp. nov., an unusual nutritionally versatile Rhodococcus species. Syst Appl Microbiol17:355–360[CrossRef]
    [Google Scholar]
  19. Klenk H. P., Clayton R. A., Tomb J. F.. 22 other authors 1997; The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature390:364–370
    [Google Scholar]
  20. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  21. Lenke H., Knackmuss H.-J.. 1992; Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2. Appl Environ Microbiol58:2933–2937
    [Google Scholar]
  22. Lenke H., Knackmuss H.-J.. 1996; Initial hydrogenation and extensive reduction of substituted 2,4-dinitrophenols. Appl Environ Microbiol62:784–790
    [Google Scholar]
  23. Lenke H., Pieper D. H., Bruhn C., Knackmuss H.-J.. 1992; Degradation of 2,4-dinitrophenol by two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2. Appl Environ Microbiol58:2928–2932
    [Google Scholar]
  24. Lenke H., Achtnich C., Knackmuss H.-J.. 2000; Perspectives of bioelimination of polynitroaromatic compounds. In Biodegradation of Nitroaromatic Compounds and Explosives pp91–126 Edited by Spain J. C.. Hughes J. B., Knackmuss H. J.. Boca Raton: CRC Press;
    [Google Scholar]
  25. Linsinger G., Wilhelm S., Wagner H., Hacker G.. 1999; Uncouplers of oxidative phosphorylation can enhance a Fas death signal. Mol Cell Biol19:3299–3311
    [Google Scholar]
  26. Nishino S. F., Spain J. C., He Z.. 2000; Strategies for aerobic degradation of nitroaromatic compounds by bacteria: process discovery to field application. In Biodegradation of Nitroaromatic Compounds and Explosives pp7–61 Edited by Spain J. C.. Hughes J. B., Knackmuss H. J.. Boca Raton: CRC Press;
    [Google Scholar]
  27. Pak J. W., Knoke K. L., Noguera D. R., Fox B. G., Chambliss G. H.. 2000; Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol66:4742–4750[CrossRef]
    [Google Scholar]
  28. Peck M. W.. 1989; Changes in concentrations of coenzyme F420 analogs during batch growth of Methanosarcina barkeri and Methanosarcina mazei . Appl Environ Microbiol55:940–945
    [Google Scholar]
  29. Purwantini E., Daniels L.. 1996; Purification of a novel coenzyme F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis . J Bacteriol178:2861–2866
    [Google Scholar]
  30. Purwantini E., Mukhopadhyay B., Spencer R. W., Daniels L.. 1992; Effect of temperature on the spectral properties of coenzyme F420 and related compounds. Anal Biochem205:342–350[CrossRef]
    [Google Scholar]
  31. Rajan J., Valli K., Perkins R. E., Sariaslani F. S., Barns S. M., Reysenbach A. L., Rehm S., Ehringer M., Pace N. R.. 1996; Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains. J Ind Microbiol16:319–324[CrossRef]
    [Google Scholar]
  32. Rieger P. G., Sinnwell V., Preuss A., Francke W., Knackmuss H.-J.. 1999; Hydride–Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. . J Bacteriol181:1189–1195
    [Google Scholar]
  33. Russ R., Walters D. M., Knackmuss H.-J., Rouviere P. E.. 2000; Identification of genes involved in picric acid and 2,4-DNP degradation by mRNA differential display. In Biodegradation of Nitroaromatic Compounds and Explosives pp127–143 Edited by Spain J. C.. Hughes J. B., Knackmuss H. J.. Boca Raton: CRC Press;
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Severin T., Schmitz R.. 1962; Umsetzung von Nitroaromaten mit Natriumborhydrid. Chem Ber95:1417–1419[CrossRef]
    [Google Scholar]
  36. Smith D. R., Doucette-Stamm L. A., Deloughery C.. 22 other authors 1997; Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol179:7135–7155
    [Google Scholar]
  37. Spain J.. 2000; Introduction. In Biodegradation of Nitroaromatic Compounds and Explosives pp1–5 Edited by Spain J. C.. Hughes J. B., Knackmuss H. J.. Boca Raton: CRC Press;
    [Google Scholar]
  38. Stumpp T., Wilms B., Altenbuchner J.. 2000; Ein neues, l-Rhamnose-induzierbares Expressionssystem für Escherichia coli . Biospektrum1:33–36
    [Google Scholar]
  39. Tatusova T. A., Madden T. L.. 1999; blast 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett174:247–250[CrossRef]
    [Google Scholar]
  40. Vorbeck C., Lenke H., Fischer P., Spain J. C., Knackmuss H.-J.. 1998; Initial reductive reactions in anaerobic microbial metabolism of 2,4,6-trinitrotoluene (TNT). Appl Environ Microbiol64:246–252
    [Google Scholar]
  41. Walters D. M., Russ R., Knackmuss H.-J., Pouviere P. E.. 2001; High-density sampling of a bacterial operon using mRNA differential display. Gene273:305–315[CrossRef]
    [Google Scholar]
  42. Wilms B., Hauck A., Reuss M., Syldatk C., Mattes R., Siemann M., Altenbuchner J.. 2001; High-cell-density fermentation for production of l- N -carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng73:95–103[CrossRef]
    [Google Scholar]
  43. Yanisch-Perron C., Vieira J., Messing J.. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-799
Loading
/content/journal/micro/10.1099/00221287-148-3-799
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error