1887

Abstract

Periplasmic copper- and zinc-cofactored superoxide dismutases ([Cu,Zn]-SODs, SodC) of several Gram-negative pathogens can protect against superoxide-radical-mediated host defences, and thus contribute to virulence. This role has been previously defined for one [Cu,Zn]-SOD in various serovars. Following the recent discovery of a second periplasmic [Cu,Zn]-SOD in , the effect of knockout mutations in one or both of the original and the new on the virulence of the porcine pathogen is investigated here. In comparison to wild-type, while mutants – whether single or double – showed no impairment in growth, they all showed equally enhanced sensitivity to superoxide and a dramatically increased sensitivity to the combination of superoxide and nitric oxide . This observation had its correlate in experimental infection both and Mutation of significantly impaired survival of in interferon γ-stimulated murine macrophages compared to wild-type organisms, and all mutants persisted in significantly lower numbers than wild-type in BALB/c ( ) and C3H/HeN ( ) mice after experimental infection, but in no experimental system were double mutants more attenuated than either single mutant. These data suggest that both [Cu,Zn]-SODs are needed to protect bacterial periplasmic or membrane components. While SodC plays a role in virulence, the data presented here suggest that this is through overcoming a threshold effect, probably achieved by acquisition of on a bacteriophage. Loss of either gene confers maximum vulnerability to superoxide on .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-719
2002-03-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480719a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-719&mimeType=html&fmt=ahah

References

  1. Battistoni, A., Pacello, F., Folcarelli, S. & 7 other authors ( 2000; ). Increased expression of periplasmic Cu,Zn superoxide dismutase enhances survival of Escherichia coli invasive strains within nonphagocytic cells. Infect Immun 68, 30–37.[CrossRef]
    [Google Scholar]
  2. Beauchamp, C. O. & Fridovich, I. ( 1971; ). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44, 276-287.[CrossRef]
    [Google Scholar]
  3. Benov, L. T. & Fridovich, I. ( 1994; ). Escherichia coli expresses a copper- and zinc-containing superoxide dismutase. J Biol Chem 269, 25310-25314.
    [Google Scholar]
  4. Buchmeier, N. A. & Heffron, F. ( 1989; ). Intracellular survival of wild-type Salmonella typhimurium and macrophage-sensitive mutants in diverse populations of macrophages. Infect Immun 57, 1-7.
    [Google Scholar]
  5. Canvin, J., Langford, P. R., Wilks, K. E. & Kroll, J. S. ( 1996; ). Identification of sodC encoding periplasmic [Cu,Zn]-superoxide dismutase in Salmonella. FEMS Microbiol Lett 136, 215-220.[CrossRef]
    [Google Scholar]
  6. Chen, L., Xie, Q. W. & Nathan, C. ( 1998; ). Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol Cell 1, 795-805.[CrossRef]
    [Google Scholar]
  7. Crapo, J. D., McCord, J. M. & Fridovich, I. ( 1978; ). Preparation and assay of superoxide dismutase. Methods Enzymol 53, 382-393.
    [Google Scholar]
  8. De Groote, M. A., Granger, D., Xu, Y., Campbell, G., Prince, R. & Fang, F. C. ( 1995; ). Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci USA 92, 6399-6403.[CrossRef]
    [Google Scholar]
  9. De Groote, M. A., Achsner, U. A., Michael, U. S. & 7 other authors ( 1997; ). Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci USA 94, 13997–14001.[CrossRef]
    [Google Scholar]
  10. Dussurget, O., Stewart, G., Neyrolles, O., Pescher, P., Young, D. & Marchal, G. ( 2001; ). Role of Mycobacterium tuberculosis copper-zinc superoxide dismutase. Infect Immun 69, 529-533.[CrossRef]
    [Google Scholar]
  11. Fang, F. C., Libby, S. J., Buchmeier, N. A., Loewen, P. C., Switala, J., Harwood, J. & Guiney, D. G. ( 1992; ). The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc Natl Acad Sci USA 89, 11978-11982.[CrossRef]
    [Google Scholar]
  12. Fang, F. C., De Groote, M. A., Foster, J. W. & 8 other authors ( 1999; ). Virulent Salmonella typhimurium has two periplasmic Cu,Zn-superoxide dismutases. Proc Natl Acad Sci USA 96, 7502–7507.[CrossRef]
    [Google Scholar]
  13. Farrant, J. L., Sansone, A., Canvin, J. R., Pallen, M. J., Langford, P. R., Wallis, T. S., Dougan, G. & Kroll, J. S. ( 1997; ). Bacterial copper-and zinc-cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis. Mol Microbiol 25, 785-796.[CrossRef]
    [Google Scholar]
  14. Fields, P. I., Groisman, E. A. & Heffron, F. ( 1989; ). A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243, 1059-1062.[CrossRef]
    [Google Scholar]
  15. Figueroa-Bossi, N. & Bossi, L. ( 1999; ). Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol 33, 167-176.[CrossRef]
    [Google Scholar]
  16. Figueroa-Bossi, N., Uzzau, S., Maloriol, D. & Bossi, L. ( 2001; ). Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol Microbiol 39, 260-271.[CrossRef]
    [Google Scholar]
  17. Fridovich, I. ( 1970; ). Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J Biol Chem 245, 4053-4057.
    [Google Scholar]
  18. Gallois, A., Klein, J. R., Allen, L. A., Jones, B. D. & Nauseef, W. M. ( 2001; ). Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J Immunol 166, 5741-5748.[CrossRef]
    [Google Scholar]
  19. Gralnick, J. & Downs, D. ( 2001; ). Protection from superoxide damage associated with an increased level of the YggX protein in Salmonella enterica. Proc Natl Acad Sci USA 98, 8030-8035.[CrossRef]
    [Google Scholar]
  20. Higgins, C. F. & Hardie, M. M. ( 1983; ). Periplasmic protein associated with the oligopeptide permeases of Salmonella typhimurium and Escherichia coli. J Bacteriol 155, 1434-1438.
    [Google Scholar]
  21. Imlay, K. R. C. & Imlay, J. A. ( 1996; ). Cloning and analysis of sodC, encoding copper, zinc superoxide dismutase of Escherichia coli. J Bacteriol 178, 2564-2571.
    [Google Scholar]
  22. Kroll, J. S., Langford, P. R., Wilks, K. E. & Keil, A. D. ( 1995; ). Bacterial [Cu,Zn]-superoxide dismutase: phylogenetically distinct from the eukaryotic enzyme, and not so rare after all! Microbiology 141, 2271-2279.[CrossRef]
    [Google Scholar]
  23. Kroll, J. S., Wilks, K. E., Farrant, J. L. & Langford, P. R. ( 1998; ). Natural genetic exchange between Haemophilus and Neisseria: intergenic transfer of chromosomal genes between major human pathogens. Proc Natl Acad Sci USA 95, 12381-12385.[CrossRef]
    [Google Scholar]
  24. Langford, P. R., Loynds, B. M. & Kroll, J. S. ( 1992; ). Copper-zinc superoxide dismutase in Haemophilus species. J Gen Microbiol 138, 517-522.[CrossRef]
    [Google Scholar]
  25. Latimer, E., Simmers, J., Sriranganathan, N., Roop, I. R. M., Schurig, G. G. & Boyle, S. M. ( 1992; ). Brucella abortus deficient in copper/zinc superoxide dismutase is virulent in BALB/C mice. Microb Pathog 12, 105-113.[CrossRef]
    [Google Scholar]
  26. McCord, J. M. & Fridovich, I. ( 1969; ). Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049-6055.
    [Google Scholar]
  27. Piddington, D. L., Fang, F. C., Laessig, T., Cooper, A. M., Orme, I. M. & Buchmeier, N. A. ( 2001; ). Cu,Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun 69, 4980-4987.[CrossRef]
    [Google Scholar]
  28. Sheehan, B. J., Langford, P. R., Rycroft, A. N. & Kroll, J. S. ( 2000; ). [Cu,Zn]-Superoxide dismutase mutants of the swine pathogen Actinobacillus pleuropneumoniae are unattenuated in infections of the natural host. Infect Immun 68, 4778-4781.[CrossRef]
    [Google Scholar]
  29. Simon, R., Priefer, U. & Puhler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering in Gram negative bacteria. Bio/Technology 1, 784-791.[CrossRef]
    [Google Scholar]
  30. Stabel, T. J., Sha, Z. & Mayfield, J. E. ( 1994; ). Periplasmic location of Brucella abortus Cu/Zn superoxide dismutase. Vet Microbiol 38, 307-314.[CrossRef]
    [Google Scholar]
  31. Steinman, H. M. ( 1982; ). Copper-zinc superoxide dismutase from Caulobacter crescentus CB15: a novel bacteriocuprein form of the enzyme. J Biol Chem 257, 10283-10293.
    [Google Scholar]
  32. Steinman, H. M. ( 1985; ). Bacteriocuprein superoxide dismutases in pseudomonads. J Bacteriol 162, 1255-1260.
    [Google Scholar]
  33. Steinman, H. M. ( 1987; ). Bacteriocuprein superoxide dismutase of Photobacterium leiognathi: isolation and sequence of the gene and evidence for a precursor form. J Biol Chem 262, 1882-1887.
    [Google Scholar]
  34. St John, G. & Steinman, H. M. ( 1996; ). Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila: role in stationary phase survival. J Bacteriol 178, 1578-1584.
    [Google Scholar]
  35. Tatum, F. M., Detilleux, P. G., Sacks, J. M. & Halling, S. M. ( 1992; ). Construction of Cu-Zn superoxide dismutase deletion mutants of Brucella abortus: analysis of survival in vitro in epithelial and phagocytic cells and in vivo in mice. Infect Immun 60, 2863-2869.
    [Google Scholar]
  36. Watson, P. R., Paulin, S. M., Jones, P. W. & Wallis, T. S. ( 2000; ). Interaction of Salmonella serotypes with porcine macrophages in vitro does not correlate with virulence. Microbiology 146, 1639-1649.
    [Google Scholar]
  37. Wilks, K. E., Dunn, K. L. R., Farrant, J. L., Reddin, K. M., Gorringe, A. R., Langford, P. R. & Kroll, J. S. ( 1998; ). Periplasmic superoxide dismutase in meningococcal pathogenicity. Infect Immun 66, 213-217.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-719
Loading
/content/journal/micro/10.1099/00221287-148-3-719
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error