1887

Abstract

Periplasmic copper- and zinc-cofactored superoxide dismutases ([Cu,Zn]-SODs, SodC) of several Gram-negative pathogens can protect against superoxide-radical-mediated host defences, and thus contribute to virulence. This role has been previously defined for one [Cu,Zn]-SOD in various serovars. Following the recent discovery of a second periplasmic [Cu,Zn]-SOD in , the effect of knockout mutations in one or both of the original and the new on the virulence of the porcine pathogen is investigated here. In comparison to wild-type, while mutants – whether single or double – showed no impairment in growth, they all showed equally enhanced sensitivity to superoxide and a dramatically increased sensitivity to the combination of superoxide and nitric oxide . This observation had its correlate in experimental infection both and Mutation of significantly impaired survival of in interferon γ-stimulated murine macrophages compared to wild-type organisms, and all mutants persisted in significantly lower numbers than wild-type in BALB/c ( ) and C3H/HeN ( ) mice after experimental infection, but in no experimental system were double mutants more attenuated than either single mutant. These data suggest that both [Cu,Zn]-SODs are needed to protect bacterial periplasmic or membrane components. While SodC plays a role in virulence, the data presented here suggest that this is through overcoming a threshold effect, probably achieved by acquisition of on a bacteriophage. Loss of either gene confers maximum vulnerability to superoxide on .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-719
2002-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480719a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-719&mimeType=html&fmt=ahah

References

  1. Battistoni A., Pacello F., Folcarelli S. 7 other authors 2000; Increased expression of periplasmic Cu,Zn superoxide dismutase enhances survival of Escherichia coli invasive strains within nonphagocytic cells. Infect Immun 68:30–37 [CrossRef]
    [Google Scholar]
  2. Beauchamp C. O., Fridovich I. 1971; Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287 [CrossRef]
    [Google Scholar]
  3. Benov L. T., Fridovich I. 1994; Escherichia coli expresses a copper- and zinc-containing superoxide dismutase. J Biol Chem 269:25310–25314
    [Google Scholar]
  4. Buchmeier N. A., Heffron F. 1989; Intracellular survival of wild-type Salmonella typhimurium and macrophage-sensitive mutants in diverse populations of macrophages. Infect Immun 57:1–7
    [Google Scholar]
  5. Canvin J., Langford P. R., Wilks K. E., Kroll J. S. 1996; Identification of sodC encoding periplasmic [Cu,Zn]-superoxide dismutase in Salmonella . FEMS Microbiol Lett 136:215–220 [CrossRef]
    [Google Scholar]
  6. Chen L., Xie Q. W., Nathan C. 1998; Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol Cell 1:795–805 [CrossRef]
    [Google Scholar]
  7. Crapo J. D., McCord J. M., Fridovich I. 1978; Preparation and assay of superoxide dismutase. Methods Enzymol 53:382–393
    [Google Scholar]
  8. De Groote M. A., Granger D., Xu Y., Campbell G., Prince R., Fang F. C. 1995; Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci USA 92:6399–6403 [CrossRef]
    [Google Scholar]
  9. De Groote M. A., Achsner U. A., Michael U. S. 7 other authors 1997; Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci USA 94:13997–14001 [CrossRef]
    [Google Scholar]
  10. Dussurget O., Stewart G., Neyrolles O., Pescher P., Young D., Marchal G. 2001; Role of Mycobacterium tuberculosis copper-zinc superoxide dismutase. Infect Immun 69:529–533 [CrossRef]
    [Google Scholar]
  11. Fang F. C., Libby S. J., Buchmeier N. A., Loewen P. C., Switala J., Harwood J., Guiney D. G. 1992; The alternative sigma factor katF ( rpoS ) regulates Salmonella virulence. Proc Natl Acad Sci USA 89:11978–11982 [CrossRef]
    [Google Scholar]
  12. Fang F. C., De Groote M. A., Foster J. W. 8 other authors 1999; Virulent Salmonella typhimurium has two periplasmic Cu,Zn-superoxide dismutases. Proc Natl Acad Sci USA 96:7502–7507 [CrossRef]
    [Google Scholar]
  13. Farrant J. L., Sansone A., Canvin J. R., Pallen M. J., Langford P. R., Wallis T. S., Dougan G., Kroll J. S. 1997; Bacterial copper-and zinc-cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis. Mol Microbiol 25:785–796 [CrossRef]
    [Google Scholar]
  14. Fields P. I., Groisman E. A., Heffron F. 1989; A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243:1059–1062 [CrossRef]
    [Google Scholar]
  15. Figueroa-Bossi N., Bossi L. 1999; Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol 33:167–176 [CrossRef]
    [Google Scholar]
  16. Figueroa-Bossi N., Uzzau S., Maloriol D., Bossi L. 2001; Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella . Mol Microbiol 39:260–271 [CrossRef]
    [Google Scholar]
  17. Fridovich I. 1970; Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J Biol Chem 245:4053–4057
    [Google Scholar]
  18. Gallois A., Klein J. R., Allen L. A., Jones B. D., Nauseef W. M. 2001; Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J Immunol 166:5741–5748 [CrossRef]
    [Google Scholar]
  19. Gralnick J., Downs D. 2001; Protection from superoxide damage associated with an increased level of the YggX protein in Salmonella enterica . Proc Natl Acad Sci USA 98:8030–8035 [CrossRef]
    [Google Scholar]
  20. Higgins C. F., Hardie M. M. 1983; Periplasmic protein associated with the oligopeptide permeases of Salmonella typhimurium and Escherichia coli . J Bacteriol 155:1434–1438
    [Google Scholar]
  21. Imlay K. R. C., Imlay J. A. 1996; Cloning and analysis of sodC , encoding copper, zinc superoxide dismutase of Escherichia coli . J Bacteriol 178:2564–2571
    [Google Scholar]
  22. Kroll J. S., Langford P. R., Wilks K. E., Keil A. D. 1995; Bacterial [Cu,Zn]-superoxide dismutase: phylogenetically distinct from the eukaryotic enzyme, and not so rare after all!. Microbiology 141:2271–2279 [CrossRef]
    [Google Scholar]
  23. Kroll J. S., Wilks K. E., Farrant J. L., Langford P. R. 1998; Natural genetic exchange between Haemophilus and Neisseria : intergenic transfer of chromosomal genes between major human pathogens. Proc Natl Acad Sci USA 95:12381–12385 [CrossRef]
    [Google Scholar]
  24. Langford P. R., Loynds B. M., Kroll J. S. 1992; Copper-zinc superoxide dismutase in Haemophilus species. J Gen Microbiol 138:517–522 [CrossRef]
    [Google Scholar]
  25. Latimer E., Simmers J., Sriranganathan N., Roop I. R. M., Schurig G. G., Boyle S. M. 1992; Brucella abortus deficient in copper/zinc superoxide dismutase is virulent in BALB/C mice. Microb Pathog 12:105–113 [CrossRef]
    [Google Scholar]
  26. McCord J. M., Fridovich I. 1969; Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055
    [Google Scholar]
  27. Piddington D. L., Fang F. C., Laessig T., Cooper A. M., Orme I. M., Buchmeier N. A. 2001; Cu,Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun 69:4980–4987 [CrossRef]
    [Google Scholar]
  28. Sheehan B. J., Langford P. R., Rycroft A. N., Kroll J. S. 2000; [Cu,Zn]-Superoxide dismutase mutants of the swine pathogen Actinobacillus pleuropneumoniae are unattenuated in infections of the natural host. Infect Immun 68:4778–4781 [CrossRef]
    [Google Scholar]
  29. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering in Gram negative bacteria. Bio/Technology 1:784–791 [CrossRef]
    [Google Scholar]
  30. Stabel T. J., Sha Z., Mayfield J. E. 1994; Periplasmic location of Brucella abortus Cu/Zn superoxide dismutase. Vet Microbiol 38:307–314 [CrossRef]
    [Google Scholar]
  31. Steinman H. M. 1982; Copper-zinc superoxide dismutase from Caulobacter crescentus CB15: a novel bacteriocuprein form of the enzyme. J Biol Chem 257:10283–10293
    [Google Scholar]
  32. Steinman H. M. 1985; Bacteriocuprein superoxide dismutases in pseudomonads. J Bacteriol 162:1255–1260
    [Google Scholar]
  33. Steinman H. M. 1987; Bacteriocuprein superoxide dismutase of Photobacterium leiognathi : isolation and sequence of the gene and evidence for a precursor form. J Biol Chem 262:1882–1887
    [Google Scholar]
  34. St John G., Steinman H. M. 1996; Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila : role in stationary phase survival. J Bacteriol 178:1578–1584
    [Google Scholar]
  35. Tatum F. M., Detilleux P. G., Sacks J. M., Halling S. M. 1992; Construction of Cu-Zn superoxide dismutase deletion mutants of Brucella abortus : analysis of survival in vitro in epithelial and phagocytic cells and in vivo in mice. Infect Immun 60:2863–2869
    [Google Scholar]
  36. Watson P. R., Paulin S. M., Jones P. W., Wallis T. S. 2000; Interaction of Salmonella serotypes with porcine macrophages in vitro does not correlate with virulence. Microbiology 146:1639–1649
    [Google Scholar]
  37. Wilks K. E., Dunn K. L. R., Farrant J. L., Reddin K. M., Gorringe A. R., Langford P. R., Kroll J. S. 1998; Periplasmic superoxide dismutase in meningococcal pathogenicity. Infect Immun 66:213–217
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-719
Loading
/content/journal/micro/10.1099/00221287-148-3-719
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error