1887

Abstract

The nucleotide composition of the internally transcribed sequences (ITSs) of the six rDNA operons of two strains of were determined. Four variable and five conserved nucleotide blocks were distinguished. Five different modular organizations were revealed for each strain and no homologous loci showed the same succession of blocks. This suggests that recombination frequently occurs between the rDNA loci, leading to the exchange of nucleotide blocks. The modular structure was also observed within the ITSs of M145, which is closely related to , and 2247, showing the same number of constant blocks but with fewer variable regions. This confirms that a high degree of ITS variability is a common characteristic among spp. The functional significance of the combinations of variable and constant nucleotide blocks of the ITS was examined by prediction of secondary structures from nucleotide sequences. The secondary structures were shown to be analogous whatever the combination of variable/constant blocks at the intragenomic, intraspecific and interspecific levels.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-633
2002-03-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480633a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-633&mimeType=html&fmt=ahah

References

  1. Anton, A. I., Martinez-Murcia, A. J. & Rodriguez-Valera, F. ( 1998; ). Sequence diversity in the 16S–23S intergenic spacer region (ISR) of the rRNA operons in representatives of the Escherichia coli ECOR collection. J Mol Evol 47, 62-72.[CrossRef]
    [Google Scholar]
  2. Anton, A. I., Martinez-Murcia, A. J. & Rodriguez-Valera, F. ( 1999; ). Intraspecific diversity of the 23S rRNA gene in the spacer region downstream in Escherichia coli. J Bacteriol 181, 2703-2709.
    [Google Scholar]
  3. Apirion, D. & Miczak, A. ( 1993; ). RNA processing in prokaryotic cells. BioEssays 15, 113-120.[CrossRef]
    [Google Scholar]
  4. Berger, F., Fischer, G., Kyriacou, A., Decaris, B. & Leblond, P. ( 1996; ). Mapping of the ribosomal operons on the linear chromosomal DNA of Streptomyces ambofaciens DSM40697. FEMS Microbiol Lett 143, 167-173.[CrossRef]
    [Google Scholar]
  5. Bricker, B. J. ( 2000; ). Characterization of the three ribosomal RNA operons rrnA, rrnB, and rrnC, from Brucella melitensis. Gene 255, 117-126.[CrossRef]
    [Google Scholar]
  6. Chiaruttini, C. & Milet, M. ( 1993; ). Gene organization, primary structure and RNA processing analysis of a ribosomal RNA operon in Lactococcus lactis. J Mol Biol 230, 57-76.[CrossRef]
    [Google Scholar]
  7. Christensen, H., Moller, P. L., Vogensen, F. K. & Olsen, J. E. ( 2000; ). Sequence variation of the 16S to 23S rRNA spacer region in Salmonella enterica. Res Microbiol 151, 37-42.[CrossRef]
    [Google Scholar]
  8. Chun, J., Huq, A. & Colwell, R. R. ( 1999; ). Analysis of 16S–23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl Environ Microbiol 65, 2202-2208.
    [Google Scholar]
  9. Cole, S. T. & Saint-Girons, I. ( 1999; ). Bacterial genomes – all shapes and sizes. In Organization of the Prokaryotic Genome , pp. 35-62. Edited by R. L. Charlebois. Washington, DC:American Society for Microbiology.
  10. Gürtler, V. ( 1999; ). The role of recombination and mutation in 16S–23S rDNA spacer rearrangements. Gene 238, 241-252.[CrossRef]
    [Google Scholar]
  11. Gürtler, V. & Barrie, H. D. ( 1995; ). Typing of Staphylococcus aureus strains by PCR-amplification of variable-length 16S–23S rDNA spacer regions: characterization of spacer sequences. Microbiology 141, 1255-1265.[CrossRef]
    [Google Scholar]
  12. Gürtler, V. & Mayall, B. C. ( 1999; ). rDNA spacer rearrangements and concerted evolution. Microbiology 145, 2-3.[CrossRef]
    [Google Scholar]
  13. Gürtler, V. & Stanisich, V. A. ( 1996; ). New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142, 3-16.[CrossRef]
    [Google Scholar]
  14. Gürtler, V., Yujun, R., Pearson, S. R., Bates, S. M. & Mayall, B. C. ( 1999; ). DNA sequence heterogeneity in the three copies of the long 16S–23S rDNA spacer of Enterococcus feacalis isolates. Microbiology 145, 1785-1796.[CrossRef]
    [Google Scholar]
  15. Hain, T., Ward-Rainey, N., Kroppenstedt, R. M., Stackebrandt, E. & Rainey, F. A. ( 1997; ). Discrimination of Streptomyces albidoflavus strains based on the size and number of 16S–23S ribosomal DNA intergenic spacers. Int J Syst Bacteriol 47, 202-206.[CrossRef]
    [Google Scholar]
  16. Iteman, I., Rippka, R., Tandeau de Marsac, N. & Herdman, M. ( 2000; ). Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiology 146, 1275-1286.
    [Google Scholar]
  17. Jumas-Bilak, E., Michaux-Charanchon, S., Bourg, G., O’Callaghan, D. & Ramuz, M. ( 1998; ). Differences in chromosome number and genome rearrangements in the genus Brucella. Mol Microbiol 27, 99-107.[CrossRef]
    [Google Scholar]
  18. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. & Hopwood, D. A. (2000). Practical Streptomyces Genetics. Norwich: The John Innes Foundation.
  19. La Farina, M., Stira, S., Mancuso, R. & Grisanti, C. ( 1996; ). Characterization of Streptomyces venezuelae ATCC 10595 rRNA gene clusters and cloning of rrnA. J Bacteriol 178, 1480-1483.
    [Google Scholar]
  20. Lan, R. & Reeves, P. R. ( 1998; ). Recombination between rRNA operons created most of the ribotype variation observed in the seventh pandemic clone of Vibrio cholerae. Microbiology 144, 1213-1221.[CrossRef]
    [Google Scholar]
  21. Leblond, P. & Decaris, B. ( 1999; ). Unstable linear chromosomes: the case of Streptomyces. In Organization of the Prokaryotic Genome , pp. 235-261. Edited by R. L. Charlebois. Washington, DC:American Society for Microbiology.
  22. Leblond, P., Fischer, G., Francou, F. X., Berger, F., Guérineau, M. & Decaris, B. ( 1996; ). The unstable region of Streptomyces ambofaciens includes 210 kb terminal inverted repeats flanking the extremities of the linear chromosomal DNA. Mol Microbiol 19, 261-271.[CrossRef]
    [Google Scholar]
  23. Leblond-Bourget, N., Philippe, H., Mangin, I. & Decaris, B. ( 1996; ). 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny. Int J Syst Bacteriol 46, 102-111.[CrossRef]
    [Google Scholar]
  24. Liu, S.-L. & Sanderson, K. E. ( 1996; ). Highly plastic chromosomal organization in Salmonella typhi. Proc Natl Acad Sci U S A 93, 10303-10308.[CrossRef]
    [Google Scholar]
  25. Luz, S. P., Rodriguez-Valera, F., Lan, R. & Reeves, P. R. ( 1998; ). Variation of the ribosomal operon 16S–23S gene spacer region in representatives of Salmonella enterica subspecies. J Bacteriol 180, 2144-2151.
    [Google Scholar]
  26. Maiwald, M., Von Herbay, A., Lepp, P. W. & Relman, D. A. ( 2000; ). Organization, structure and variability of the rRNA operon of the Whipple’s disease bacterium (Tropheryma whippelii). J Bacteriol 182, 3292-3297.[CrossRef]
    [Google Scholar]
  27. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. ( 1999; ). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288, 911-940.[CrossRef]
    [Google Scholar]
  28. McGuire, G., Wright, F. & Prentice, M. J. ( 1997; ). A graphical method for detecting recombination in phylogenetic data sets. Mol Biol Evol 14, 1125-1131.[CrossRef]
    [Google Scholar]
  29. Naı̈mi, A., Beck, G. & Branlant, C. ( 1997; ). Primary and secondary structures of rRNA spacer regions in enterococci. Microbiology 143, 823-834.[CrossRef]
    [Google Scholar]
  30. Nour, M. ( 1998; ). 16S–23S and 23S–5S intergenic spacer regions of lactobacilli: nucleotide sequence, secondary structure and comparative analysis. Res Microbiol 149, 433-448.[CrossRef]
    [Google Scholar]
  31. Nour, M., Naı̈mi, A., Beck, G. & Branlant, C. ( 1995; ). 16S–23S and 23S–5S intergenic spacer regions of Streptococcus thermophilus and Streptococcus salivarius, primary and secondary structure. Curr Microbiol 31, 270-278.[CrossRef]
    [Google Scholar]
  32. Ogasawara, N., Moriya, S. & Yoshikawa, H. ( 1983; ). Structure and organization of rRNA operons in the region of the replication origin of the Bacillus subtilis chromosome. Nucleic Acids Res 18, 6301-6318.
    [Google Scholar]
  33. Pernodet, J. L., Boccard, F., Alègre, M. T., Gagnat, J. & Guérineau, M. ( 1989; ). Organization and nucleotide sequence analysis of a ribosomal RNA cluster from Streptomyces ambofaciens. Gene 79, 33-46.[CrossRef]
    [Google Scholar]
  34. Pinnert-Sindico, S., Ninet, L., Preud’homme, J. & Cosar, C. ( 1955; ). A new antibiotic spiramycin. Antibiot Annu 1954–1955, 724–727.
    [Google Scholar]
  35. Privitera, A., Rappazzo, G., Sangari, P., Giannino, V., Licciardello, L. & Stefani, S. ( 1998; ). Cloning and sequencing of a 16S/23S ribosomal spacer from Haemophilus parainfluenzae reveals an invariant, mosaic-like organisation of sequence blocks. FEMS Microbiol Lett 164, 289-294.[CrossRef]
    [Google Scholar]
  36. Redenbach, M., Kieser, H. M., Denapaite, D., Eichner, A., Cullum, J. & Hopwood, D. A. ( 1996; ). A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21, 77-96.[CrossRef]
    [Google Scholar]
  37. Rhodes, M. ( 1986; ). Genetic recombination and maps for Streptomyces. In The Bacteria, a Treatise on Structure and Function, vol. IX, Antibiotic-Producing Streptomyces , pp. 27-60. Edited by S. W. Queener & L. E. Day. Orlando, FL:Academic Press.
  38. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Takeuchi, T., Sawada, H., Tanaka, F. & Matsuda, I. ( 1996; ). Phylogenetic analysis of Streptomyces spp. causing potato scab based on 16S rRNA sequences. Int J Syst Bacteriol 46, 476-479.[CrossRef]
    [Google Scholar]
  40. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-633
Loading
/content/journal/micro/10.1099/00221287-148-3-633
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error